Science 1206

Unit 2: Chemistry

Periodic Table Videos

Chemical Reactions

- Chemistry: the study of matter, its properties and its changes
- Matter: anything that has mass and takes up space (energy is not matter).
- The 3 states of mater:
 - Solid liquid gas

Pure Substances

Pure Substances:

have constant composition; all the particles that make up the substance are the same

1. Elements:

- the simplest form of matter that can exist under normal conditions
- composed of only one kind of atom
- cannot be broken into simpler substances by chemical means (heat/electricity)
- combine to form other substances

2. Compounds:

substances composed of *two or more different kinds of atoms* can be broken down into simpler substances by chemical means

Mixtures

- Mixtures have variable compositions
 - Composed of 2 or more substances
- Homogeneous Mixtures: solutions have only one visible component
- Heterogeneous Mixtures: mechanical mixtures have 2 or more visible components
 - eg. sand in water, vegetable soup

Pure Substances: Elements and Compounds

Mixtures

• Homogeneous – uniform look

Mixtures

Heterogeneous Mixtures

A closer look

Properties of Matter

Physical Property:

- characteristics of matter, used to identify substances
- eg. state at room temperature, boiling and melting points, color, solubility, mass, electrical conductivity

Properties of Matter

- Chemical Property: characteristic of matter that can be observed when matter undergoes a change in composition (chemical reaction):
 - describes "how it reacts"
 - butane reacts with oxygen to produce carbon dioxide and water

Examples

Substance	Physical Property	Chemical Property
Iron		
Sodium		
Sugar		
Propane		

Changes in Matter

- Physical Change: a change in the size or form of a substance that does not change its composition
 - cutting, bending, changes in state: boiling, melting, condensing, and solidifying

Changes in Matter

- Chemical Change: a chemical reaction; a change in which at least one or more new substances
 - (products) are formed. The products have different properties from the starting substances (reactants).
 - $Fe_{(s)}$ + $O_{2(g)}$ \rightarrow $Fe_2O_{3(s)}$ The rust produced has completely different properties from iron and oxygen.

Change in Matter

Evidence of Chemical Change:

- change in color, odor, energy (temperature change, light)
- bubbles = new gas produced
- precipitate = new solid produced
- Hard to reverse

Homework

- Read pg. 172-174
- Questions: 1,2,4,7
- Homework Check:

- All elements can be split into two groups
- Metals and Nonmetals

Elements and Periodic Table

PROPERTY	METALS	NONMETALS
LUSTRE	shiny	dull
MALLEABILITY	malleable (bendable)	brittle
CONDUCTIVITY OF HEAT & ELECTRICITY	good conductors	poor or nonconductors
STATE AT ROOM TEMPERATURE	all solids except mercury, Hg = liquid	most are gases, some are solids and bromine, Br = liquid
REACTIVITY WITH ACID	mostly yes	no
LOCATION (PERIODIC TABLE)	left of staircase line	right of staircase line

Periodic Chart of the Elements

IA					VIIIA
20 (CC)(40)(CC (CC)	comic number> 1 1	← Ion charge	Legend		2
2.1 I-	2.1		SOLID		- He
loydrogen	hydrogen		SOLID		helius
1.01 M	folar mass (g/mol) >1.01		PIONID	IIIA IVA 5 6 7	VA VIA VIIA 4.00
1.0 1.5			nigoto	2.0 2.5 3.	0 3.5 4.0 -
Li Be			GAS	B C	N O F Ne
6.94 9.01			Gno	10.81 12.01	14.01 16.00 19.00 20.18
11 1+ 12 2+ 0.9 1.2				13 3+ 14 1 1.5 1.0 2.	
Na Mg				Al Si	P S Cl Ar
22.99 24.31 IIIB	IVB VB VIB	VIIB VIIIE	IB III	B 26.98 28.09	30.97 32.07 35.45 argon 39.95
19 1+ 20 2+ 21 3	+ 22 4+ 23 5+ 24 3- 1.5 3+ 1.6 4+ 1.6 2-		2+ 28 2+ 29 2+ 30 3+ 1.0 3+ 1.9 1+ 1.6		3 3- 34 2- 35 1- 36
K Ca Sc	Ti V Cr	Min Fe Co	Ni Cu Zn	n Ga Ge	As Se Br Kr
39.10 40.08 44.96	47.90 50.94 52.00	mangamese iron cobalt 54.94 55.85 58.93	58.71 63.55 65.3		74.92 78.96 79.90 83.80
37 1+ 38 2+ 39 3	+ 40 4+ 41 5+ 42 64	43 7+ 44 3+ 45	1+ 46 2+ 47 1+ 48 2.2 4+ 1.9 1.7	2+ 49 3+ 50 4+ 5	
Rb Sr Y	Zr Nb Mo	Tc Ru Rh	Pd Ag Cd		Sb Te I Xe
rebidium strontium yttrium 85.47 87.62 88.91	21roonium niobium molybdenum 91.22 92.91 95.94	98.91 101.07 102.91	palladium silver cadmi		antimony tellurium todine xenom 121.75 127.60 126.90 131.30
55 1+ 56 2+	72 4 73 5 74 6		4+ 78 4+ 79 3+ 8 0	2 81 1+ 82 2+ 8	
0.7 0.9 57-71 Cs Ba lanthanoid	1.3 1.5 1.7 W	Re Os Ir	2.2 2+ 2.4 1+ 1.9 Pt Au Ho	10 1.0 30 1.0 40 1. T1 Pb	Bi Po At Rn
cesium barium 132.91 137.33	hafnium tantalum tungatan 178.49 180.95 183.85	rhenium comium iridium 186.21 190.20 192.22	platinum gold reco	y thallium lead	bismuth polonium astatine radon 208.98 (209) (210) (222)
87 1+ 88 2+	104 105 106	107 108 109	2 2	(c) (N) (d)	
o.7 o.9 89-103 Fr Ra sctinoids		Uns Uno Une			
francium radium (223) 226.03	unnilquadium unnilpentium unnilhexium (261) (262) (263)		es.		
(223)					
	57 34 58 34 59 34		5+ 63 3+ 64 5+ 65 2+ - 2+ 1.1 1.2	3+ 66 3+ 67 3+ 6	THE TOTAL TAX STREET STREET STREET STREET
	La Ce Pr	Nd Pm Sm	Eu Gd Th	Dy Ho	Er Tm Yb Lu
	lanthanum carium praseodymiu 138.91 140.12 140.91	neodymius promethium samarius 144.24 (145) 150.35			erbium thulium ytterbium lutetium 167.26 168.93 173.04 174.97
	89 3+ 90 4+ 91 54		4+ 95 3+ 96 3+ 97 5+ 1.3 4+ -	3+ 98 3+ 99 3+ 1	00 3+ 101 2+ 102 2+ 103 3+
	Ac Th Pa	U Np Pu	Am Cm Bk		Fm Md No Lr
	ectinium thorium protactiniu (227) 232.04 231.04	n uranium neptunium plutonium 238.03 237.05 (244)	n americium curium berkel: (243) (247) (247		fermium mendelevium nobelium lawrencium (257) (258) (259) (260)
	SI 50 % IS 31				

Metalliods

METALLOIDS (Semimetals)

- elements that have some properties of metals and some properties of nonmetals
- includes all elements on either side of the staircase line except Al and At
- also includes one form of Carbon, graphite,
 which is dull and brittle (nonmetal), but is a good conductor of electricity (metal)

CHEMICAL FAMILIES (GROUPS):

- Elements are grouped on the periodic table according to physical and chemical properties
- These are called Chemical Families or Groups

Hydrogen – Special Case

- the lightest element and most abundant element in the universe
- doesn't really belong to any group
- it sometimes behaves like an alkali metal, sometimes like a halogen and at other times in
- its own unique way ie. as an acid

Groups and Periods

- Groups (Families) refer to the vertical columns
- Numbered on top

- Periods refer to the horizontal rows
 - (Think school periods)

	L	0.0			0.0		0.5	0.0	h.=	0.0	0.0	00		0.0	0.0		a- 1	0.5
19	1+	20 2+	21 3+	22 4+	23 5+	24 s+	25 z+	26 3+	27 2+	28 2+	29 2+	30 2+	31 3+	32 4	33 3-	34 2-	35 1-	36
0.0		1.0	1.3	1.5 3+	1.6 4+	1.6 2+	1.5 4+	1.0 2+	1.0 3+	1.0 3+	1.9 1*	1.6	1.6	1.0	2.0	2.4	2.0	
K		Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	\mathbf{Br}	Kr
potass		calcium	acandium	titamium	vanadium	chromium	manganese	iron	cobalt	nickel	copper	zinc	gallium	cermanium	arsenic	selenium	bromine	krypton
39.1		40.08	44.96	47.90	50.94	52.00	54.94	55.85	58.93	58.71	63.55	65.38	69.74	72.59	74.92	78.96	79.90	83.80
	$\overline{}$	20	20	40		40	40		4.5		4.5	40	40			50	50	

The Atom

THE ATOM:

- •The basic building block of all matter
- •Electrically neutral: # of positive charges = # of negative charges
- •composed of 3 types of subatomic particles:

PARTICLE	SYMBOL	RELATIVE CHARGE	ACTUAL MASS (g)	LOCATION
Proton	p ⁺	1+	1.67 x 10 ⁻²⁴	nucleus
Neutron	n°	0	1.67 x 10 ⁻²⁴	nucleus
Electron	e ⁻	1 ⁻	9.11 x 10 ⁻²⁸	orbital

Finding the # of Protons

• The Atomic Number IS the # of Protons

Finding the # of Electrons

If the element is NEUTRAL, then # protons = # electrons

Finding the # of Neutrons

- Mass Number = # p + # n
- Therefore # n = Mass Number # p

Examples

Quantum Mechanics

 According to this theory, an electron with a specific energy occupies a region in space (orbital) or electron energy level.

Electron Energy Diagrams

- The number of occupied energy levels in any atom is normally the same as the **period number** in which the atom appears
- for the first 3 energy levels, the maximum number of electrons that can be present are 2, 8 and 8 in order of increasing energy (increasing distance from nucleus)
- a lower energy level is filled with electrons to its maximum before the next level is started.
- the electrons in the highest (outermost) occupied energy level = valence electrons, which is the same as the group number (for group A elements)

Example

Examples

Worksheet

- Complete the worksheet # 1 on pg 12
- Checked as homework tomorrow

STABLE ATOMS (pg. 4 – notes) (pg 188 – Book)

- The noble gases are very stable (unreactive)
 - They all have 8 valence electrons
 - Valence electrons = electrons in the outermost shell
- Other elements are unstable (reactive)
 - They have to lose OR gain electrons to find stability
 - a) Octet Rule: atoms attempt to obtain 8 valence electrons
 - b) Duet Rule: atoms attempt to obtain 2 valence electrons
 - includes H, Li and Be

lons

- When an element loses or gains electrons, they become *charged*
 - Sngle atoms: form simple ions (monatomic ions)
 - Na = sodium atom and Cl = chlorine atom become:
 - Na⁺ = sodium ion and Cl⁻ = chloride ion
 - group of atoms: form complex ions (polyatomic ions)
 - Ex. N and O can form NO₃ nitrate ion

Atoms = No charge Ions = Charged

Sodium metal and chlorine gas react to produce NaCl, a very stable and unreactive substance, compared to Na (alkali metal) or Cl (halogen).

They do so by first forming ions.

		Compare to nearest Noble gas:	
Na atom	Na+ ion		
		Compare to nearest Noble gas:	
Cl atom	Clion		

Finding the charge of an ions

- Determine how many electrons an element must lose/gain
- 2. Use the periodic table of elements

Positive and Negative Ions

 Elements that lose electrons form positive ions called Cations

Elements that gain electrons form negative ions called Anions

Homework

Complete energy diagrams for IONS

Write new symbol with charge

Try to find the charge by comparing p+ and e- totals

Homework Check

- Worksheet # 1 Energy Diagrams of Atoms
- Worksheet # 2 Energy Diagrams of Ions

- Today's Class
 - Quick recap
 - Naming Ions
 - Biomes Test

1 1p+ H+	Worksheet 2 IONS					2 2e ⁻ 1p ⁺ H ⁻	2 X
	IIA, 2	IIIA, 13	IVA, 14	VA, 15	VIA, 16	VIIA, 17	
3 <u>2e</u> - 3p+ Li+	4 <u>2e</u> - 4p+ Be ²⁺	5	6 X	7 <u>5e</u> - <u>2e</u> - 7p+ N ³⁻	8 <u>6e</u> - <u>2e</u> - 8p+ O ²⁻	9 <u>7e</u> - <u>2</u> e- 9p+ F-	10 X
11 <u>8e</u> - <u>2e</u> - 11p+ Na+	12 <u>8e</u> - <u>2e</u> - 12p+ Mg ²⁺	13 <u>8e</u> - <u>2e</u> - 13p+ Al3+	14 X	15 <u>8e</u> - <u>8e</u> - <u>2e</u> - 15p+ P ³⁻	16 <u>8e</u> - <u>8e</u> - <u>2e</u> - 16p+ S ² -	17 <u>8e</u> - <u>8e</u> - <u>2e</u> - 17p+ Cl ¹⁻	X
19 <u>8e</u> - <u>8e</u> - <u>2e</u> - 19p+ K+	20 <u>8e</u> - <u>8e</u> - <u>2e</u> - 20p + Ca ²⁺						

A quick review

Elements

- Pure substances composed of 1 type of atom
- Everything on the periodic table

Compounds

Pure substances that have more then 1 type of atom

Mixtures

Substances with made of more then one compound

A quick review

- Physical properties
- Chemical properties
- Physical Changes
- Chemical Changes

Previously

- The periodic table
 - Metals and Nonmetals
 - Groups/Families
 - Periods]
- The Atom
 - Protons
 - Electrons
 - Neutrons

Last Class

- Energy Levels (2, 8, 8 rules)
- lons: elements that do not have the same number of protons and electrons
 - They have a charge
 - Ex:

Ca²⁺

lons

- Cations: Positive Ions
 - Formed when elements lose electrons
- Anions : Negative Ions
 - Formed with elements gain electrons

Naming Ions (Notes: pg 5) Write this down!!

- To name ions:
 - Cations
 - element name + the word "ion"
 - Ex: Try:
 - Na = sodium atomMg
 - Na^+ = sodium ion Mg^{2+}

Naming Ions (Notes: pg 5)

- To name ions:
 - Anions
 - stem of element name + "ide" + the word "ion"
 - Ex: Try:
 - CI = chlorine atomF
 - Cl⁻ = chloride ion F⁻

More Practice:

S O N F

Homework:

Worksheet # 3 - Atoms and Ions

#	English Name	International Symbol	Number of Proto ns	Number of Electron s	Number of electron s lost or gained	Net Cha rge
Eg.	Sodium ion	Na+	11	10	Lost 1	1+
1	Neon atom					
2	Lithium ion				Lost 1	
3			47			1+
4				18		2-

Homework Check and Review

Worksheets # 1,2, and 3 should be done

Today:

- Review Worksheet #3 step by step
- Introduce Naming Ionic Compounds
- Review Ecology Test #2

#	English Name	International Symbol	Number of Proto ns	Number of Electr ons	Number of electrons lost or gained	Net Char ge
Eg.	Sodium ion	Na+	11	10	Lost 1	1+
1	Neon atom					
2	Lithium ion				Lost 1	
3			47			1+
4				18		2-
5		Si				
6			33	36		
7				54	Lost 1	
8			30	28		
9				1	0	
10		Р				

	Name	Symbol	p+	e-	Loss or gain?	Charge
11		Ca ²⁺				
12	Selenide ion					
13			13			3+
14		Rb+				
15			18	18		
16			8	10		
17	lodine atom					
18		Pu				
19				54	Gained 2	
20	Unnilseptium atom					

Ionic Compounds (Notes: pg. 5) (Text: pg 188-195)

- Ionic Compounds are composed of a cation and an anion
 - Cation
 - Usually a metal (Na+, Mg²⁺, Li+, Ca²⁺, Fe³⁺, etc)
 - Exception Ammonium, NH₄+
 - Anion
 - Can be a nonmetal (Cl⁻, N³⁻, O²⁻)
 - Polyatomic Ions (NO₃⁻, PO₄³⁻, CH₃COO⁻)

Ionic Compounds

- All are solids at SATP (Standard Ambient Temperature and Pressure) of 25oC and 100 kPa.
- When they dissolve in water, they form aqueous solutions that conduct electricity
 - they are electrolytes
- These compounds form after an electron transfer:

Ionic Compounds

- These compounds form after an electron transfer:
 - Ex: Calcium and Chlorine form Calcium Chloride

• Homework Check:

- Read pg 188 189
- Answer questions #1,2,3

Ionic Compounds (metals with nonmetals)

- the resulting ions (cations and anions) are attracted to each other (since they are oppositely charged) and they form ionic bonds
- Together all of the ions present form an ionic crystal lattice in which the net charge is zero
 - Eg: (1) in a sample of sodium chloride, NaCl, for every Na⁺ ion there is one Cl⁻ ion
 - Eg: (2) in a sample of calclium chloride, CaCl₂, for every Ca²⁺ ion there are 2 Cl⁻ ions

Crystal Lattice

NaCI: A Formula Unit

expression of the simplest whole number ratio of cations to anions

Types of Ionic Compounds

- Monatomic Ions (Simple Ions)
 - Single atoms that have lost or gained one or more electrons
 - Form Binary Ionic Compounds (2 simple ions)
 - Eq. Na⁺Cl⁻
- Polyatomic Ions (Complex Ions)
 - Cations or anions composed of a group of atoms with a net positive or negative charge
 - $NH_4^+ NO_2^- NO_3^- CO_3^{2-}$
 - Ammonium ion Nitrite ion Nitrate ion Carbonate ion

Types of Ions and Compounds

Multivalent lons

- certain transition metals can form more than one type of ion, each with a different charge
- Eg. Fe³⁺ Fe²⁺
- The more commonly occurring is listed on top, thus Fe³⁺ is more common than Fe²⁺
- Others:

Hydrated Ionic Compounds

- Water molecules are loosely held within the ionic compound
- Eg. $ZnCl_2 \cdot 6H_2O$ $CuSO_4 \cdot 5H_2O$

Binary Ionic Compounds (Write this Down)

Composed of two different ions

Name	Formula		
sodium chloride	NaCl		
magnesium oxide	MgO		
lithium nitride	Li ₂ N		
aluminum oxide	Al_2O_3		

Only two different types of elements!

Binary ionic formulas

•Given the name, write the formula:

Steps

- 1. Write the symbols for the ions
- 2. Balance the charges
- 3. Write the chemical formula

Remember:

BaCl₂ not BaCl²

Ex: potassium iodide

1.

2.

3.

Ex: calcium iodide

1.

2.

3.

Example:

silver oxide

beryllium bromide

What about these?

aluminum oxide

zinc nitride

Nomenclature (Naming)

Name the cation and anion and put them together

NaI

CaI₂

 Al_2S_3

Worksheet #4 (Pass in tomorrow)

#	Chemical Formula	Name of Compound
Eg.	CaCl ₂	Calcium chloride
1.		Potassium chloride
2.	MgO	
3.		Aluminum chloride

Science 1206

Complex Ionic Compounds

Write this Down!!

Complex Ions

- More then one type of atom is in the ion
- Listed on the back of periodic table

Table of Some Common Polyatomic Ions

1 - Ions		2 - Ions	3 - Ions	
Name	Formula Name		Formula Name	
dihydrogen phosphate dihydrogen phosphite hydrogen carbonate hydrogen sulfate hydrogen sulfite bromate acetate benzoate hypochlorite chlorite	HPO ₄ ²⁻ HPO ₃ ²⁻ CO ₃ ²⁻ SO ₄ ²⁻ SO ₃ ²⁻ C ₂ O ₄ ²⁻ CrO ₄ ²⁻ Cr ₂ O ₇ ²⁻ S ₂ O ₃ ²⁻ SiO ₃ ²⁻	hydrogen phosphate hydrogen phosphite carbonate sulfate sulfite oxalate chromate dichromate thiosulfate silicate	PO ₄ ³⁻ phosphate PO ₃ ³⁻ phosphite BO ₃ ³⁻ borate	
chlorate		1 + Ions		
cyanide		Formula	Name	
hydroxide nitrate nitrite permanganate			ammonium hydronium	
	dihydrogen phosphate dihydrogen phosphite hydrogen carbonate hydrogen sulfate hydrogen sulfite bromate acetate benzoate hypochlorite chlorite chlorate perchlorate cyanide iodate hydroxide nitrate nitrite	dihydrogen phosphate dihydrogen phosphite hydrogen carbonate hydrogen sulfate hydrogen sulfite bromate acetate benzoate hypochlorite chlorate perchlorate perchlorate nitrate nitrite permanganate HPO ₄ ²⁻ HPO ₃ ²⁻ CO ₃ ²⁻ CO ₃ ²⁻ CO ₄ ²⁻ CO ₄ ²⁻ Cr ₂ O ₄ ²⁻ Cr ₂ O ₇ ²⁻ SiO ₃ ²⁻ SiO ₃ ²⁻ Cr ₂ O ₃ Cr ₂ Cr ₂ O ₃ Cr ₂ Cr ₂ O ₃ Cr ₃ Cr ₃ Cr ₃ O ₃ Cr ₃ Cr ₃ O ₃ Cr ₃ Cr ₃ Cr ₃ O ₃ Cr ₃	dihydrogen phosphate dihydrogen phosphite hydrogen carbonate hydrogen sulfate hydrogen sulfate hydrogen sulfate CO_3^{2-} carbonate hydrogen sulfate CO_3^{2-} sulfate hydrogen sulfate CC_3^{2-} sulfate bromate $CC_2O_4^{2-}$ oxalate acetate $CC_2O_4^{2-}$ chromate benzoate $CC_2O_4^{2-}$ chromate $CC_2O_4^{2-}$ dichromate hypochlorite $CC_2O_4^{2-}$ dichromate $CC_2O_4^{2-}$ dichromate $CC_2O_4^{2-}$ silicate $CC_2O_4^{2-}$ thiosulfate $CC_2O_4^{2-}$ silicate $CC_2O_4^{2-}$	

Write this Down!!

Give formulas for the following:

potassium bromate

silver nitrate

aluminum cyanide

ammonium carbonate (2 complex ions)

calcium hydrogen carbonate

Name the following formulas

- Identify cation and anion first (Look at the tables)
 - NaCH₃COO

- KMnO₄

Continued,,,

- Na₃BO₂

Man, this is COMPLEX !!!!

- NH₄NO₃

If you see 'lots of letters' --

Worksheets

- Worksheet # 4 Binary Ionic Compounds
- Worksheet # 5 Complex Ions

Both due to be passed in on Tuesday

Science 1206

Multivalent Ions

Worksheets Due:

- Worksheet # 4 Binary Ionic Compounds
- Worksheet # 5 Complex Ions

Both due to be passed in Today

Quick Review

Binary Ionic Compounds

Complex Ions

Write this Down!!

Multivalent Ions

Some elements can form more then one ion

		IVB		VB		VIB		VIIB				TIIB—				IB
3+	22		23		24		25		26		27		28		29	2+
	1.5	3+	1.6	4+	1.6	2+	1.5	4+	1.8	2+	1.8	3+	1.8	3+	1.9	1+ 1
		Ti		V		Cr		Mn		Fe		Co		Ni		Cu
ı	ti	itanium	va	nadium	ch	romium	ma	nganese		iron		cobalt		nickel		copper
	4	17.90	5	0.94	5	2.00	5	54.94		55.85	į	58.93		58.71	(53.55
3+	40	4+	41	5+	42	6+	43	7+	44	3+	45	3+	46	2+	47	1+
	1.4		1.6	3+	1.8		1.9		2.2	4+	2.2		2.2	4+	1.9	1
	1	D		1.T1_		16-		-		-	1	DI-	1	D-1	l	7~~
		\mathtt{Zr}	-	Nb		Mo		Tc		Ru		Rh		Pd		Ag
	zi	ZY rconium	l .	ND iobium	l	MO ybdenum	teo	TC chnetium	ru	KU thenium	2	KN chodium	pa	PQ alladium		AG silver
			ni		mol								1 -			- 1
_		rconium 91.22	ni	iobium	mol	ybdenum 5.94		chnetium	1	thenium 01.07		rhodium 02.91	1 -	alladium .06.40		silver
	9	rconium 91.22	ni 9	iobium 2.91	mo1 9	ybdenum 5.94 6+	9	chnetium 98.91 7+	1	othenium 01.07	1	rhodium 02.91	1	alladium .06.40	1	silver 07.87
ds	72	rconium 91.22	73 1.5	iobium 2.91	mol 9	ybdenum 5.94 6+	9 75	chnetium 98.91 7+	1 76	othenium 01.07	1 77	rhodium 02.91	78	alladium .06.40	1 79	07.87 3+ 8
ds	72 1.3	rconium 91.22 4+	73 1.5	10bium 2.91 5+	mol 9 74 1.7	ybdenum 5.94	75 1.9	chnetium 98.91 7+	76 2.2	othenium 01.07 4+	77 2.2	2.91 4+	78 2.2	alladium .06.40 4+ 2+	1 79	3+ 8
ds	72 1.3	Hf	73 1.5	10bium 2.91 5+	mo1 9 74 1.7	ybdenum 5.94 6+	75 1.9	Re	76 2.2	Os	1 77 2.2	rhodium .02.91 4+	78 2.2	11adium .06.40 4+ 2+	79 2.4	3+ 01+ 1

Multivalent Ions

- Ex: Iron
 - Can form Fe³⁺ and Fe²⁺
 - the most common ion is listed on top
 - Fe³⁺ and Cl⁻

Fe²⁺ and Cl⁻

Naming Rules

 Named the same as other ionic compounds, but we specify the charge using Roman Numerals

• Ex:

- Iron (III) chloride

Iron (II) chloride

2 = II

3 = III

4 = IV

5 = V

6 = VI

7 = VII

8 = VIII

Names → Formulas

Ex: copper (I) nitrate

Ex: copper (II) nitrate

Names -> Formulas continued

Ex: ruthenium (IV) oxide

Ex: bismuth (V) carbonate

Formulas -> Names

- Need to identify which ion is present
- Use the anion (-) to find the charge of the cation (+)
- Ex:
 - 1. CrF₃

2. CrS

3+ 2+

 Cr

52.00

Cntd...

3. $Pd(CO_3)_2$

```
46 2+
2.2 4+
Pd
palladium
106.40
```

4. Au₂O₃

```
79 3+
2.4 1+
Au
gold
196.97
```

Worksheets

Worksheet # 6 - Multivalent Ions

Test: Next week

Science 1206

Hydrated Compounds

Homework Check

Worksheet #6 – Multivalent Ions

- Return Worksheets #4 & #5
 - Fix mistakes are return to me for ½ marks!!

#	Chemical Formula			Name of Compound
Eg.	Cu ₂ S	2 Cu+	S ²⁻	Copper(I) sulfide
1.	AuCl ₃			
2.				Mercury(II) oxide
3.	Sb ₂ S ₃			
4.	V ₂ O ₅			
5.				Iron(III) iodide
6.				Copper(II) sulfide
7.	FeS			
8.				Tin(II) fluoride

10.			Lead(IV) oxide
11.		С	hromium(III) oxide
12.	HgS		
13.	1190	11	ranium(VI) fluoride
14.	SnO ₂		
15.	31102		Iranium(IV) avida
16.	Γ. Ο		Jranium(IV) oxide
17.	Fe ₂ O ₃		
18.			Cobalt(II) chloride
	TiO ₂		
19.	NiBr ₂		
20.			Copper(II) chloride

Write this Down!!!

Hydrated Compounds (pg. 6 notes, not in textbook)

 Ionic compounds sometime have water molecules held loosely

Ex:

Copper(II) sulfate pentahydrate

Cobalt chloride dihydrate

1 = mono

2 = di

3 = tri

4 = tetra

5 = penta

6 = hexa

7 = hepta

8 = octa

9 = nona

10 = deca

Name -> Formula

- 1. Give the formula as usual
- 2. Add " #H₂O " on the end

Ex. Zinc chloride hexahydrate

1 = mono

2 = di

3 = tri

4 = tetra

5 = penta

6 = hexa

7 = hepta

8 = octa

9 = nona

10 = deca

continued...

Ex: copper(II) sulfate pentahydrate

1 = mono

2 = di

3 = tri

4 = tetra

5 = penta

6 = hexa

7 = hepta

8 = octa

9 = nona

10 = deca

Formula → Name

- 1. Name the ionic compound
- 2. Add *prefix***hydrate** on the end

• Ex: $Ba(OH)_2 \cdot 8H_2O$

```
1 = mono

2 = di

3 = tri

4 = tetra

5 = penta

6 = hexa

7 = hepta

8 = octa

9 = nona

10 = deca
```

Continued...

Ex:

$$NiCl_2 \cdot H_2O$$

1 = mono

2 = di

3 = tri

4 = tetra

5 = penta

6 = hexa

7 = hepta

8 = octa

9 = nona

10 = deca

Don't forget to check if the cation is MULTIVALENT!!!

Homework

- Worksheet #7
- Fix/Finish Worksheets 4 & 5

- Remember:
 - Lunchtime tutorial today
 - Friday @ 3:00pm

Test Outline

- Classifications of Matter
 - Pure substances
 - Compounds
 - Mixtures
- Properties and Changes of Matter
- Elements and the Periodic Table
 - Groups/Families
 - Periods

The Atom

- # of protons, electrons, neutrons
- Energy diagrams
- lons

Naming and Formula Writing

- Binary Ionic Compounds
- Complex Ions
- Multivalent cations
- Hydrated compounds

Test

- 25 Multiple Choice
- Short Answer
- Naming
- Formula Writing

Homework Check

- Worksheet #6 Multivalent Ions
- Worksheet #7 Hydrated Compounds
- Return Worksheets #4 & #5
 - Fix mistakes are return to me for ½ marks!!

1.	AuCl ₃	Au ³⁺ 3 Cl ⁻	Gold (III) chloride
2.	HgO	Hg ²⁺ O ²⁻	Mercury(II)oxide
3.	Sb ₂ S ₃	2 Sb ³⁺ 3 S ²⁻	Antimony (III) sulfide
4.	V ₂ O ₅	2 V ⁵⁺ 5 O ²⁻	Vanadium (V) oxide
5.	Fel ₃	Fe ³⁺ 3 l ⁻	Iron (III) iodide
6.	CuS	Cu ²⁺ S ²⁻	Copper (II) sulfide
7.	FeS	Fe ²⁺ S ²⁻	Iron (II) Sulfide
8.	SnF ₂	Sn ²⁺ 2 F-	Tin (II) fluoride
9.	MnO ₂	Mn ⁴⁺ 2 O ²⁻	Manganese (IV) oxide
10.	PbO ₂	Pb ²⁺ 2 O ²⁻	Lead (IV) oxide
11.	Cr ₂ O ₃	2 Cr ³⁺ 3 O ²⁻	Chromium (III) oxide
12.	HgS	Hg ²⁺ S ²⁻	Mercury (II) sulfide
13.	UF ₆	U ⁶⁺ 6 F-	Uranium (VI) fluoride
14.	SnO ₂	Sn ²⁺ 2 O ²⁻	Tin (II) oxide
15.	UO ₂	U ⁴⁺ 2 O ²⁻	Uranium (IV) oxide
16.	Fe ₂ O ₃	2 Fe ³⁺ 3 O ²⁻	Iron (III) oxide
17.	CoCl ₂	Co ²⁺ 2 Cl ⁻	Cobalt (II) chloride
18.	TiO ₂	Ti ⁴⁺ 2 O ²⁻	Titanium (IV) dioxide
19.	NiBr ₂	Ni ²⁺ 2 Br ⁻	Nickel (II) bromide
20.	CuCl ₂	Cu ²⁺ 2 Cl ⁻	Copper (II) chloride
		· · · · · · · · · · · · · · · · · · ·	

Eg.	Copper (II) sulfate pentahydrate	CuSO ₄ • 5H ₂ O
1	Magnesium sulfate heptahydrate	MgSO ₄ 7H ₂ O
2	Sodium carbonate decahydrate	Na ₂ CO ₃ • 10H ₂ O
3	Magnesium chloride hexahydrate	MgCl ₂ • 6H ₂ O
4	Barium chloride dihydrate	BaCl ₂ • 2H ₂ O
5	Cadmium nitrate tetrahydrate	Cd(NO ₃) ₂ • 4H ₂ O
6	Zinc chloride hexahydrate	ZnCl ₂ • 6H ₂ O
7	Zinc sulphate heptahydrate	ZnSO ₄ • 7H ₂ O
8	Lithium chloride tetrahydrate	LiCl • 4H ₂ O
9	Sodium thiosulfate pentahydrate	Na ₂ S ₂ O ₃ • 5H ₂ O
10	Cobalt(II)chloride hexahydrate	CoCl ₂ • 6H ₂ O
11	Aluminum chloride hexahydrate	AICI ₃ • 6H ₂ O
12	Calclium chloride dihydrate	CaCl ₂ • 2H ₂ O
13	Barium hydroxide octahydrate	Ba(OH) ₂ • 8H ₂ O
14	Nickel(II)chloride hexahydrate	NiCl ₂ • 6H ₂ O
15	Sodium sulfate decahydrate	Na ₂ SO ₄ • 10H ₂ O
16	Iron(III)phosphate tetrahydrate	FePO ₄ • 4H ₂ O
17	Iron (III) sulfate heptahydrate	FeSO ₄ • 7H ₂ O
18	Calcium sulphate dihydrate	CaSO ₄ • 2H ₂ O
19	Tin (IV) chloride pentahydrate	SnCl ₄ • 5H ₂ O
20	Barium bromide tetrahydrate	BaBr ₂ • 4H ₂ O

Review:

Worksheets

Science 1206

Molecular Compounds

Molecular Compounds (Handouts pg 8, Text pg 201)

• MOLECULAR SUBSTANCES:

- are solids, liquids or gases at SATP
- if soluble, dissolve in water to form colorless aqueous solutions that do not conduct electricity
 - they are non-electrolytes
- they contain only nonmetal atoms

Molecular Compounds

Molecule:

 a particle of a molecular substance that contains a fixed number of covalently-bonded nonmetal atoms

• Covalent Bond:

 formed from the Sharing of valence electrons between nonmetal atoms, which results in an electron structure that is the same as a noble gas, for each atom in the molecule

Covalent Bonding

Hydrogen

Chlorine

Carbon dioxide

Note: Ionic vs Molecular

Ionic Compounds

Cation (+) and Anion (-)
Electrons exchanged
Ionic bonds
Solids at Room Temp
Electrolytes

Molecular Compounds

Only nonmetals
Electrons shared
Covalent bonds
Gas, liquids, and solids
Nonelectrolytes

1. Molecular Elements

Only contain 1 type of nonmetal

Type	Molecular Elements
Monatomic – one atom	Noble gases: $He_{(g)} Ne_{(g)} Ar_{(g)} Kr_{(g)} Xe_{(g)} Rn_{(g)}$
Diatomic – two atoms/molecule	Hydrogen, Oxygen, Nitrogen and the Halogens
	The "HONorable Halogens"
	$H_{2(g)} O_{2(g)} N_{2(g)} F_{2(g)} Cl_{2(g)} Br_{2(l)} I_{2(s)} At_{2(s)}$
Polyatomic – more than 2	
atoms/molecule	ozone = $O_{3(g)}$ Phosphorus = $P_{4(s)}$ Sulfur (Sulphur) = $S_{8(s)}$

2. Molecular Compounds

Molecular Compounds

a) Common (to memorize):

```
H_2O_{(I)} = water

CH_{4(g)} = methane

CH_3OH_{(I)} = methanol

H_2O_{2(I)} = hydrogen peroxide

C_3H_{8(g)} = propane

C_2H_5OH_{(I)} = ethanol

NH_{3(g)} = ammonia

C_6H_{12}O_{6(s)} = glucose

C_{12}H_{22}O_{11(s)} = sucrose
```

2. Molecular Compounds

- B. Binary Molecular Compounds
 - 2 different nonmetals
 - CO CO₂ CCI₄

Writing Molecular Formulas

• General Rules

- 1. Write each atom symbol.
- 2. Each prefix indicates the subscript for the nonmetal atom that precedes it (# of atoms present).
- 3. If no prefix is present, then there is only one atom of that nonmetal present. Monoxide = one oxygen atom present.

Examples: Carbon monoxide

Carbon dioxide

Carbon tetrachloride

Suphur trioxide

Dinitrogen monoxide

Naming Binary Molecular Compounds

Naming Molecular Substances *General Rules*

- 1. First element is named in full.
- 2. Second element name is shortened and given an **ide** ending.
- 3. Use prefixes (same as for hydrates) to indicate the number of each kind of atom.
 - The prefix <u>mono</u> is usually only used for molecules with 1 atom of oxygen (monoxides).
 - Certain Hydrogen compounds (those with H first in the formula) do not use prefixes.
 - $H_2S(g)$ = hydrogen sulfide, **not** dihydrogen sulfide

Examples

• Examples:

 $NO_{(g)}$

 $P_4O_{6(s)}$

SO_{2(g)}

 $SO_{3(g)}$

 $N_2O_{(g)}$

 $PCI_{3(s)}$

NI_{3(s)}

Homework

Worksheet #8

Science 1206

Acids and Bases

Homework Check

Worksheet 8 – Molecular compounds

Eg.	CCI ₄	Carbon tetrachloride
1		Nitrogen
2	O_2	
3		Argon
4	CO ₂	
5		The other noble gases (besides Argon)
6	NO	
7	NO ₂	
8		Sulphur dioxide

9	SO ₃	
10		Carbon monoxide
11		Ozone
12		Ethanol
13		Sucrose
14		Sulphur (sulfur)
15	P ₄ O ₁₀	
16	P ₄ O ₆	
17		Chlorine dioxide
18		Methanol

19	P ₄	
20		Ammonia
21	CH ₄	
22	H ₂ O	
23		Dinitrogen monoxide

Acids (p. 10 notes)

• ACIDS

- Molecules that ionize in water to produce hydrogen ions,
 H+(aq), ions which give acids their properties
- Properties of acids:
 - Conduct electricity
 - Turn blue litmus paper red
 - Taste sour
 - React with many metals to produce hydrogen gas, H2(g)
 - Have a pH value of less than 7
 - Neutralize or partially neutralize bases

Acids

General Formula:

H_____COOH (aq)

- Note: not all hydrogen containing compounds are acids
 - Eg: NH₃ CH₄ CH₃OH C₂H₅OH

Naming Acids

General Rules

- Name the hydrogen compound like an ionic compound
- 2. Then convert the ionic name to the acid name

hydrogen	ide becomes hydro	ic acid
hydrogen	ite becomes	ous acid
hydrogen	ate becomes	ic acid

Naming Acids

hydrogen _____ide becomes hydro_____ic acid hydrogen ____ite becomes _____ous acid hydrogen _____ate becomes _____ic acid

Acid Formula	Ionic Name	Acid Name
HCI _(aq)		
HCN _(aq)		
HNO _{2(aq)}		
H ₂ SO _{3(aq)}		
HNO _{3(aq)}		
H ₂ SO _{4(aq)}		
H ₃ PO _{4(aq)}		
CH ₃ COOH _(aq)		

Writing Acid Formulas

General Rules:

1. Translate acid name into ionic name:

```
hydro___ic acid → hydrogen ___ide

___ous acid → hydrogen ___ite

___ic acid → hydrogen ___ate
```

- 2. Write chemical formulas for each ion, using rules for writing formulas for ionic compounds.
- 3. Hydrogen symbol is written first (cation), except for carboxylic acids (those with COO group), in which case hydrogen is placed at the end eg: CH3COOH
- 4. Give the state as aqueous = (aq).

hydro___ic acid → hydrogen ___ide __ous acid → hydrogen ___ite __ic acid → hydrogen ___ate

Examples

Acid Name	Ionic Name	Formula
Hydroiodic acid		
Chlorous acid		
Chloric acid		
Boric acid		
Benzoic acid		

Homework

Worksheet #9

hydrogen	ide becomes hydro	ic acid
hydrogen	ite becomes	ous acid
hydrogen	ate becomes	ic acid

E g	HCI _(aq)	H ⁺ Cl ⁻ hydrogen chloride	Hydrochloric acid
1	HBr _(aq)	Hydrogen bromide	Hydrobromic acid
2	H ₂ CO _{3(aq)}	Hydrogen carbonate	Carbonic acid
3			Hypochlorous acid
4	H ₂ CrO _{4(aq)}	Hydrogen chromate	Chromic acid
5			Chlorous acid
6	H ₂ S _(aq)	Hydrogen sulfide	Hydrosulfuric acid
7	H ₃ BO _{3(aq)}	Hydrogen bromate	bromic acid
8	HI _(aq)	Hydrogen iodide	Hydroiodic acid
9			Oxalic acid
10	HCIO _{4(aq)}	Hydrogen chlorate	Chlroic acid

hydrogen	ide becomes hydro	ic acid
hydrogen	ite becomes	ous acid
hydrogen	ate becomes	ic acid

11			Nitrous acid
12			Benzoic acid
13	H ₂ SO _{3(aq)}	Hydrogen sufite	Sulfurous acid
14			Chloric acid
15	$H_2S_2O_{3(aq)}$	Hydrogen thiosulfate	Thiosulfuric acid
16			Permanganic acid
17			Hydrofluoric acid
18	HCN _(aq)	Hydrogen cyanide	Hydrocyanic acid
19	, , ,		Thiocyanic acid
20			Sulphuric acid

Base

- Most are ionic compounds with OH⁻ and (aq)
- Properties of bases:
 - Conduct electricity
 - Turn red litmus paper blue
 - Taste bitter
 - Feel slippery
 - Have a pH value greater than 7
 - Neutralize or partially neutralize acids

Bases

Naming Bases

Follow the general rules given for ionic compounds

Writing Base Formulas

follow the general rules given for ionic compounds

lithium hydroxide

Calcium hydroxide

WHMIS

 Workplace and Hazardous Materials Information System

MSDS

Material Safety Data Sheet

Homework

- WHMIS and MSDS Worksheet
 - Passed in on Monday
 - Very short assignment
- Naming and Formula Review Sheet

Science 1206

Chemical Equations

Pass in Assignments

- WHMIS and MSDS Worksheet
 - Passed in on Monday
 - Very short assignment
- Naming and Formula Review Sheet

Get Homework Checklist

Chemical Equations

 Show how chemicals react to form new compounds and molecules

$$2 \text{ Mg}_{(s)} + O_{2(g)} \rightarrow 2 \text{ MgO}_{(s)}$$

Reactants → Products

- The number of atoms must be conserved!!!
- We use Coefficients to balance

Before we start:

Learn to count the atoms:

$$(NH_4)_2SO_4$$

$$O =$$

$$N =$$

$$H =$$

Balancing Chemical Equations

Start by balancing the atom with the highest numbers:

$$Mg + O_2 \rightarrow MgO$$

Note: Sometimes easier to balance the IONS instead of the atoms!!!

$$Cu + AgNO_3 \rightarrow Ag + Cu(NO_3)_2$$

$$Pb(NO_3)_2 + KI \rightarrow Pbl_2 + KNO_3$$

 $NH_3 \rightarrow N_2 + H_2$

$$CH_4 + O_2 \rightarrow CO_2 + H_2O$$

Try These:

1. Fe +
$$O_2 \rightarrow Fe_2O_3$$

2. Na +
$$Cl_2 \rightarrow NaCl$$

3.
$$AsCl_3 + H_2S \rightarrow As_2S_3 + HCI$$

4.
$$H_2SO_4 + NaHCO_3 \rightarrow Na_2SO_4 + CO_2 + H_2O$$

5.
$$C_3H_8 + O_2 \rightarrow CO_2 + H_2O$$

Homework

- Worksheet #10 Balancing
 - We will correct this at the beginning of next class
 - Have it done!!!!

Test Review:

1.
$$C_{10}H_{20(s)} + C_{2(q)} \rightarrow CO_{2(q)} + H_2O_{(q)}$$

2.
$$_Al(OH)_{3(s)} + _HCl_{(aq)}$$
 \rightarrow $_AlCl_{3(aq)} + _HOH_{(l)}$

3.
$$C_4H_{8(q)}$$
 + $O_{2(q)}$ $CO_{2(q)}$ + $H_2O_{(q)}$

5.
$$C_5H_{12(I)}$$
 + $C_{2(q)}$ $CO_{2(q)}$ + $H_2O_{(q)}$

6.
$$\underline{\text{Li}}_{(s)}$$
 + $\underline{\text{AlBr}}_{3(aq)}$ \rightarrow $\underline{\text{LiBr}}_{(aq)}$ + $\underline{\text{Al}}_{(s)}$

7.
$$C_2H_{6(q)}$$
 + $C_2G_{(q)}$ + $C_2G_{(q)}$ + $C_2G_{(q)}$

8. __NH₄OH_(aq) + __H₃PO_{4(aq)}
$$\rightarrow$$
 __(NH₄)₃PO_{4(aq)} + __HOH_(l)

9.
$$Li_{(s)}$$
 + $P_{4(s)}$ \rightarrow $Li_3P_{(s)}$

10.
$$CH_{4(q)}$$
 + $O_{2(q)}$ - $CO_{2(q)}$ + $H_2O_{(q)}$

12.
$$Ca(NO_3)_{2(aq)} + Ma_3PO_{4(aq)}$$
 \rightarrow $Ca_3(PO_4)_{2(s)} + MaNO_{3(aq)}$

WRITING BALANCED CHEMICAL EQUATIONS (pg. 2, Part II notes)

- To write a balanced chemical equation from a statement or word equation:
 - Write the chemical formulas for all reactants and products involved
 - 2. Arrange as Reactants → Products

Example

Hydrogen and chlorine react to produce hydrogen chloride gas.

1. Word Equation:

2. Chemical Equation:

Example 2 (pg. 6, Balancing Worksheet)

Solid potassium and aqueous magnesium chloride react to produce solid magnesium and aqueous potassium chloride.

1. Word Equation:

2. Chemical Equation:

Remainder of Class (Homework)

 Worksheet #11 – Balancing Chemical Reactions

 Don't forget: WHMIS Worksheet and Formula Review

Science 1206

Reaction Types

Homework

- Worksheet #11 Balancing Chemical Reactions
 - Don't forget: WHMIS Worksheet and Formula Review
 - Both have to be passed in today
- Quiz on Monday Balancing and Reaction Types

Worksheet #11

2. Solid aluminum combines with oxygen gas to produce solid aluminum oxide.

Aluminum + oxygen → aluminum oxide

$$AI + O_2 \rightarrow AI_2O_3$$

3. Hydrogen peroxide decomposes (breaks down) into water and oxygen gas.

Hydrogen peroxide → water + oxygen

$$2 H_2O_2 \rightarrow 2 H_2O + O_2$$

4. The combustion (burning) of ethyne gas, $C_2H_{2(g)}$ in the presence of oxygen gas produces carbon dioxide gas and water vapor.

ethyne + oxygen → carbon dioxide + water

$$2 C_2H_2 + 5 O_2 \rightarrow 4 CO_2 + 2 H_2O$$

Types of Chemical Reactions (pg 2-4 notes)

- There are 5 types of reactions that you need to recognize:
 - Simple Composition
 - Simple Decomposition
 - Single Replacement
 - Double Replacement
 - Hydrocarbon Combustion

1. Formation (Simple Composition)

2 elements or compounds react to form 1 new compound

Example:
$$2 \text{ Mg}_{(s)} + O_{2(g)} \rightarrow 2 \text{ MgO}$$

General:
$$A + B \rightarrow AB$$

Word: element + element → compound

Formation: $A + B \rightarrow AB$

magnesium reacts with oxygen from the air

Magnesium + oxygen →

• Mg + $O_2 \rightarrow$

Formation: $A + B \rightarrow AB$

hydrogen and oxygen react to produce water

Hydrogen + oxygen → water

• $2 H_2 + O_2 \rightarrow 2 H_2O$

2. Decomposition

1 compound breaks down into 2 elements or compounds

General: AB → A + B

Word: compound → element + element OR compound → compound + compound

Example: $2 Cu_2O_{(s)} \rightarrow 4 Cu_{(s)} + O_{2(g)}$

$AB \rightarrow A + B$

water is broken down into its elements

Water →

 $H_2O \rightarrow$

$AB \rightarrow A + B$

mercury(II) oxide decomposes

Mercury(II) oxide →

HgO →

3. Single Replacement (Single Displacement)

A element replaces the cation/anion in a compound

General: $A + BC \rightarrow B + AC$

Word: element + compound → element + compound

Example: $Zn_{(s)} + Pb(NO_3)_{2(aq)} \rightarrow Pb_{(s)} + Zn(NO_3)_{2(aq)}$

$A + BC \rightarrow B + AC$

Barium and zinc chloride react

Barium + zinc chloride →

• Ba + $ZnCl_2 \rightarrow$

$A + BC \rightarrow B + AC$

- chlorine reacts with sodium bromide solution
- Chlorine + sodium bromide →

• Cl_2 + NaBr \rightarrow

4. Double Replacement (Double Displacement)

Two compounds react and switch ions

General: AB + CD → AD + CB

Word: compound + compound → compound + compound

Example: $BaCl_{2(aq)} + AgNO_{3(aq)} \rightarrow Ba(NO_3)_{2(aq)} + AgCl_{(s)}$

- solutions of barium chloride and potassium carbonate react
- barium chloride + potassium carbonate

• BaCl₂ + K_2CO_3 \rightarrow

5. Hydrocarbon Combustion (Not on midterm)

 A hydrocarbon (C_xH_y) reacts with oxygen to produce CO₂ and H₂O

General: $C_xH_y + O_{2(g)} \rightarrow CO_{2(g)} + H_2O_{(g)}$

Word: hydrocarbon + oxygen → carbon dioxide + water

Example: $C_3H_{8(g)} + 5O_{2(g)} \rightarrow 3CO_{2(g)} + 4H_2O_{(g)}$

Butane, C₄H_{10(g)} is burned as fuel in a lighter

Butane + oxygen →

Formation Decomposition Single Replacement Double Replacement Hydrocarbon Combustion

1.
$$C_{10}H_{20(s)} + C_{2(q)} \rightarrow CO_{2(q)} + M_2O_{(q)}$$

2.
$$Al(OH)_{3(s)} + HCl_{(aq)} \rightarrow AlCl_{3(aq)} + HOH_{(l)}$$

3.
$$C_4H_{8(q)}$$
 + $O_{2(q)}$ $CO_{2(q)}$ + $H_2O_{(q)}$

4.
$$C_{(s)}$$
 + $O_{2(q)}$ \rightarrow $CO_{(q)}$

5.
$$C_5H_{12(1)} + C_{2(q)} \rightarrow CO_{2(q)} + H_2O_{(q)}$$

6.
$$\underline{\text{Li}}_{(s)}$$
 + $\underline{\text{AlBr}}_{3(aq)}$ \rightarrow $\underline{\text{LiBr}}_{(aq)}$ + $\underline{\text{Al}}_{(s)}$

Formation Decomposition Single Replacement Double Replacement Hydrocarbon Combustion

7.
$$C_2H_{6(q)}$$
 + $O_{2(q)}$ - $CO_{2(q)}$ + $H_2O_{(q)}$

8. __NH₄OH_(aq) + __H₃PO_{4(aq)}
$$\rightarrow$$
 __(NH₄)₃PO_{4(aq)} + __HOH_(l)

9.
$$Li_{(s)}$$
 + $P_{4(s)}$ \rightarrow $Li_3P_{(s)}$

10.
$$\underline{CH_{4(q)}}$$
 + $\underline{O_{2(q)}}$ \rightarrow $\underline{CO_{2(q)}}$ + $\underline{H_2O_{(q)}}$

11.
$$Al(OH)_{3(s)} + _H_2SO_{3(aq)} \rightarrow _Al_2(SO_3)_{3(s)} + _HOH_{(1)}$$

Homework

- Worksheets
 - 12
 - 13
 - 14 (Not Combustion)
- Monday Short Quiz
 - Balancing
 - Give equations from names
 - Identify reaction types