## Science 1206

## Unit 2: Chemistry

Periodic Table Videos

## Chemical Reactions

- Chemistry: the study of matter, its properties and its changes
- Matter: anything that has mass and takes up space (energy is not matter).
- The 3 states of mater:
- Solid
liquid
gas


## Pure Substances

## Pure Substances:

have constant composition; all the particles that make up the substance are the same

1. Elements:

- the simplest form of matter that can exist under normal conditions
- composed of only one kind of atom
- cannot be broken into simpler substances by chemical means (heat/electricity)
- combine to form other substances

2. Compounds:
substances composed of two or more different kinds of atoms can be broken down into simpler substances by chemical means

## Mixtures

- Mixtures have variable compositions
- Composed of 2 or more substances
- Homogeneous Mixtures: solutions - have only one visible component
- Heterogeneous Mixtures: mechanical mixtures have 2 or more visible components
- eg. sand in water, vegetable soup


## Pure Substances: Elements and Compounds



## Mixtures

- Homogeneous - uniform look



## Mixtures



- Heterogeneous Mixtures




## A closer look



## Properties of Matter

## Physical Property:

- characteristics of matter, used to identify substances
- eg. state at room temperature, boiling and melting points, color, solubility, mass, electrical conductivity


## Properties of Matter

- Chemical Property: characteristic of matter that can be observed when matter undergoes a change in composition (chemical reaction):
- describes "how it reacts"
- butane reacts with oxygen to produce carbon dioxide and water


## Examples

| Substance | Physical <br> Property | Chemical <br> Property |
| :--- | :--- | :--- |
| Iron |  |  |
| Sodium |  |  |
| Sugar |  |  |
| Propane |  |  |

## Changes in Matter

- Physical Change: a change in the size or form of a substance that does not change its composition
- cutting, bending, changes in state: boiling, melting, condensing, and solidifying


## Changes in Matter

- Chemical Change: a chemical reaction; a change in which at least one or more new substances
- (products) are formed. The products have different properties from the starting substances (reactants).
$-\mathrm{Fe}_{(\mathrm{s})}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{Fe}_{2} \mathrm{O}_{3(\mathrm{~s})}$ The rust produced has completely different properties from iron and oxygen.


## Change in Matter

- Evidence of Chemical Change:
- change in color, odor, energy (temperature change, light)
- bubbles = new gas produced
- precipitate = new solid produced
- Hard to reverse


## Homework

- Read pg. 172-174
- Questions: 1,2,4,7
- Homework Check:
- All elements can be split into two groups
- Metals and Nonmetals Elements and Periodic Table

| PROPERTY | METALS | NONMETALS |
| :---: | :---: | :---: |
| LUSTRE | shiny | dull |
| MALLEABILITY | malleable (bendable) | brittle |
| CONDUCTIVITY OF HEAT \& ELECTRICITY | good conductors | poor or nonconductors |
| STATE AT ROOM TEMPERATURE | all solids except mercury, $\mathrm{Hg}=$ liquid | most are gases, some are solids and bromine, $\mathrm{Br}=$ liquid |
| REACTIVITY WITH ACID | mostly yes | no |
| LOCATION (PERIODIC TABLE) | left of staircase line | right of staircase line |

## Periodic Chart of the Elements



## Metalliods

- METALLOIDS (Semimetals)
- elements that have some properties of metals and some properties of nonmetals
- includes all elements on either side of the staircase line except Al and At
- also includes one form of Carbon, graphite, which is dull and brittle (nonmetal), but is a good conductor of electricity (metal)


## CHEMICAL FAMILIES (GROUPS):

- Elements are grouped on the periodic table according to physical and chemical properties
- These are called Chemical Families or Groups


## Noble Gases

## Alkali Metals

Halogens


Lanthanides

Actinides

| $\int_{\substack{\text { Lantanamu } \\ 138.91}}^{1.1}$ | $\begin{aligned} & 8 \\ & { }^{8} \\ & \text { Ce } \\ & \text { cortiun } \\ & 140.12 \end{aligned}$ | $\int_{\substack{59 \\ 2.1 \\ \text { praseodyyutun } \\ 140.91}}{ }^{3+}$ | ${ }^{2} \mathrm{Nd}_{\substack{3 \\ \text { meddymian } \\ 144.24}}$ | $\left.\right\|_{\substack{61 \\ \text { procmataine } \\(145)}}$ | ${ }_{\substack{2 \\ \text { anmarium } \\ 150.35}}^{\mathrm{Sm}^{2+}}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\underset{\substack{\text { metasam } \\(227)}}{\text { Ac }}$ | $\underset{\substack{\text { Thar tux } \\ 232.04}}{\substack{\text { nen }}}$ | ${ }_{\substack{91 \\ 2.5 \\ \mathrm{~Pa}^{5} \\ \mathrm{protactintman} \\ 231.04}}^{\mathrm{st}}$ |  | $\underset{\substack{\mathrm{nopt} \\ 237.05}}{\mathrm{Naman}}$ | ${ }_{\substack{\text { pletoation } \\(244)}}^{\text {Pu }}$ |  |


| $\begin{array}{lll} 64 & \\ { }^{2.1} \mathrm{Gd} \\ \begin{array}{c} \text { gedolinime } \\ 157.25 \end{array} \end{array}$ | $\underbrace{}_{\substack{65 \\ 2.2 \\ \text { Turbsen } \\ 158.93}}$ | $\int_{\substack{66 \\ \text { dyy } \\ \text { dypariux } \\ 162.50}}^{34}$ |
| :---: | :---: | :---: |
|  |  |  |




## Hydrogen - Special Case

-     - the lightest element and most abundant element in the universe
-     - doesn't really belong to any group
-     - it sometimes behaves like an alkali metal, sometimes like a halogen and at other times in
- its own unique way ie. as an acid


## Groups and Periods

- Groups (Families) refer to the vertical columns
- Numbered on top

- Periods refer to the horizontal rows
- (Think school periods)



## The Atom

## THE ATOM:

-The basic building block of all matter
-Electrically neutral: \# of positive charges = \# of negative charges
-composed of 3 types of subatomic particles:

| PARTICLE | SYMBOL | RELATIVE <br> CHARGE | ACTUAL <br> MASS (g) | LOCATION |
| :--- | :---: | :---: | :---: | :---: |
| Proton | $\mathrm{p}^{+}$ | $1^{+}$ | $1.67 \times 10^{-24}$ | nucleus |
| Neutron | $\mathrm{n}^{-}$ | 0 | $1.67 \times 10^{-24}$ | nucleus |
| Electron | $\mathrm{e}^{-}$ | $1^{-}$ | $9.11 \times 10^{-28}$ | orbital |

Finding the \# of Protons

- The Atomic Number IS the \# of Protons


Finding the \# of Electrons

- If the element is NEUTRAL, then \# protons = \# electrons

Finding the \# of Neutrons

- Mass Number = \# p + \# n
- Therefore \# n = Mass Number - \# p


## Examples



## Quantum Mechanics

- According to this theory, an electron with a specific energy occupies a region in space (orbital) or electron energy level.


## Electron Energy Diagrams

- The number of occupied energy levels in any atom is normally the same as the period number in which the atom appears
- for the first 3 energy levels, the maximum number of electrons that can be present are 2, 8 and 8 in order of increasing energy (increasing distance from nucleus)
- a lower energy level is filled with electrons to its maximum before the next level is started.
- the electrons in the highest (outermost) occupied energy level = valence electrons, which is the same as the group number (for group A elements)


## Example


$\qquad$ (max 8) (max 8)
(max 2)

The electrons in the Outermost shell are called Valence Electrons

## Examples



## Worksheet

- Complete the worksheet \# 1 on pg 12
- Checked as homework tomorrow

Worksheet 1


IIA, 2 IIIA, 13 IVA, 14 VA, 15 VIA, 16 VIIA,
17

| 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $1 \mathrm{e}^{-}$ | $\underline{2 e^{-}}$ | $3 \mathrm{e}^{-}$ | $4 \mathrm{e}^{-}$ | $5 \mathrm{e}^{-}$ | $\underline{6 e^{-}}$ | $7 \mathrm{e}^{-}$ | $8 \mathrm{e}^{-}$ |
| $\underline{2 e^{-}}$ | $\underline{2 \mathrm{e}^{-}}$ | $\underline{2} e^{-}$ | $\underline{2 e^{-}}$ |
| $3 p^{+}$ | $4 \mathrm{p}^{+}$ | $5 p^{+}$ | $6 p^{+}$ | $7 \mathrm{p}^{+}$ | $8 \mathrm{p}^{+}$ | $9 p^{+}$ | $10 p^{+}$ |
| Li | Be | B | C | N | $\bigcirc$ | F | Ne |
| 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 |
| $1 \mathrm{e}^{-}$ | $\underline{2 e^{-}}$ | $3 \mathrm{e}^{-}$ | $4 \mathrm{e}^{-}$ | $5{ }^{-}$ | $\underline{6 e^{-}}$ | $\underline{7-}$ | $8 \mathrm{e}^{-}$ |
| $8 \mathrm{e}^{-}$ | $8 \mathrm{e}^{-}$ | $8 \mathrm{e}^{-}$ | $8 \mathrm{e}^{-}$ | $8{ }^{-}$ | $8 \mathrm{e}^{-}$ | $8{ }^{-}$ | $8 \mathrm{e}^{-}$ |
| $\underline{2 e^{-}}$ | $\underline{2 e^{-}}$ | $\underline{2 e^{-}}$ | $\underline{2-}$ | $\underline{\text { 2 }}$ | $\underline{2 e^{-}}$ | $\underline{2 e^{-}}$ | $\underline{\text { 2 }}$ |
| $11 p^{+}$ | $12 p^{+}$ | $13 p^{+}$ | $14 p^{+}$ | $15 p^{+}$ | $16 p^{+}$ | $17 p^{+}$ | $18 p^{+}$ |
| Na | Mg | Al | Si | P | S | Cl | Ar |
| 19 | 20 | How many VALENCE e-'s on each one |  |  |  |  |  |
| $\frac{1 e^{-}}{}$ | $\underline{2 e}$ |  |  |  |  |  |  |
| $\frac{8 \mathrm{e}^{-}}{8 \mathrm{e}^{-}}$ | $\frac{8 \mathrm{e}^{-}}{8 \mathrm{e}^{-}}$ |  |  |  |  |  |  |
| $\frac{8 e^{-}}{2 e^{-}}$ | $\frac{8 e^{-}}{2 e^{-}}$ |  |  |  |  |  |  |
| $\frac{2 \mathrm{e}}{19} \mathrm{p}^{+}$ | ${ }^{20} p^{+}$ |  |  |  |  |  |  |
| K | Ca |  |  |  |  |  |  |

## STABLE ATOMS (pg. 4 - notes) (pg 188 - Book)

- The noble gases are very stable (unreactive)
- They all have 8 valence electrons
- Valence electrons = electrons in the outermost shell
- Other elements are unstable (reactive)
- They have to lose OR gain electrons to find stability
- a) Octet Rule: - atoms attempt to obtain 8 valence electrons
- b) Duet Rule: - atoms attempt to obtain 2 valence electrons
- includes H, Li and Be


## Ions

- When an element loses or gains electrons, they become charged
- Sngle atoms: form simple ions (monatomic ions)
- $\mathrm{Na}=$ sodium atom and $\mathrm{Cl}=$ chlorine atom become:
- $\mathrm{Na}^{+}=$sodium ion and $\mathrm{Cl}^{-}=$chloride ion
- group of atoms: form complex ions (polyatomic ions)
- Ex. N and O can form $\mathrm{NO}_{3}^{-}$- nitrate ion

Atoms = No charge
Ions $=$ Charged

Sodium metal and chlorine gas react to produce NaCl , a very stable and unreactive substance, compared to Na (alkali metal) or Cl (halogen).
They do so by first forming ions.


## Finding the charge of an ions

1. Determine how many electrons an element must lose/gain
2. Use the periodic table of elements


## Positive and Negative lons

- Elements that lose electrons form positive ions called Cations
- Elements that gain electrons form negative ions called Anions


## Homework

IA, 1
VIIIA,
18

Complete energy diagrams for IONS

Write new symbol with charge

Try to find the charge by comparing $\mathrm{p}+$ and e- totals

## Homework Check

- Worksheet \# 1 - Energy Diagrams of Atoms
- Worksheet \# 2 - Energy Diagrams of Ions
- Today's Class
- Quick recap
- Naming lons
- Biomes Test

Worksheet 1

ATOMS

| 2 |
| :---: |
| $\frac{2 \mathrm{e}-}{2 \mathrm{p}+}$ |
| He |

IIA, 2 IIIA, 13 IVA, 14 VA, 15 VIA, 16 VIIA,
17

| 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $1{ }^{-}$ | $\underline{2 e}$ | $3 \mathrm{e}^{-}$ | $4 \mathrm{e}^{-}$ | $5 \mathrm{e}^{-}$ | $6{ }^{-}$ | $7{ }^{-}$ | $8{ }^{-}$ |
| $\underline{2 e^{-}}$ | $\underline{2 e^{-}}$ | $\underline{2 e^{-}}$ | $\underline{2 e^{-}}$ | $\underline{2 e}$ | $\underline{2 e^{-}}$ | $\underline{2} \mathrm{e}^{-}$ | $\underline{2 e^{-}}$ |
| $3 p^{+}$ | $4 \mathrm{p}^{+}$ | $5 p^{+}$ | $6 p^{+}$ | $7 p^{+}$ | $8 \mathrm{p}^{+}$ | $9 p^{+}$ | $10 p^{+}$ |
| Li | Be | B | C | N | O | F | Ne |
| 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 |
| $\underline{1 e^{-}}$ | $\underline{2 e^{-}}$ | $3 \mathrm{e}^{-}$ | 4e- | $5 \mathrm{e}^{-}$ | $6 \mathrm{e}^{-}$ | $7 \mathrm{e}^{-}$ | $8 \mathrm{e}^{-}$ |
| $\underline{8 e^{-}}$ | $8 \mathrm{e}^{-}$ |
| $\underline{2 e^{-}}$ | $\underline{2 e^{-}}$ | $\underline{2 e^{-}}$ | $\underline{2 e^{-}}$ | $\underline{2-}$ | $\underline{2 e^{-}}$ | $\underline{2 e^{-}}$ | $\underline{2 e^{-}}$ |
| $11 p^{+}$ | $12 p^{+}$ | $13 p^{+}$ | $14 p^{+}$ | $15 p^{+}$ | $16 p^{+}$ | $17{ }^{+}$ | $18 p^{+}$ |
| Na | Mg | Al | Si | P | S | Cl | Ar |
| 19 | 20 | How many VALENCE e-'s on each one |  |  |  |  |  |
| $\underline{1 e^{-}}$ | $\underline{20}$ |  |  |  |  |  |  |
| $\frac{8 e^{-}}{8 e^{-}}$ | $\frac{8 \mathrm{e}^{-}}{8 \mathrm{e}^{-}}$ |  |  |  |  |  |  |
| $\frac{8 e^{-}}{2 e^{-}}$ | $8 \mathrm{e}^{-}$ |  |  |  |  |  |  |
| $\frac{2 e^{-}}{19} p^{+}$ | $\underline{2 e^{-}}$ |  |  |  |  |  |  |
| $19 p^{+}$ | 20p+ |  |  |  |  |  |  |
| K | Ca |  |  |  |  |  |  |


| 1 |  |  |
| :---: | :---: | :---: |
| $1 \mathrm{p}^{+}$ |  |  |
| $\mathrm{H}^{+}$ |  |  |
|  | Worksheet 2 | 2 |

IIA, 2 IIIA, 13 IVA, 14 VA, 15 VIA, 16 VIIA,
17

| $\begin{gathered} 3 \\ \underline{2 \mathrm{e}^{-}} \\ \frac{3 \mathrm{p}^{+}}{} \\ \mathrm{Li}^{+} \end{gathered}$ | $\begin{gathered} 4 \\ \frac{2 \mathrm{e}^{-}}{} \\ 4 \mathrm{p}^{+} \\ \mathrm{Be}^{2+} \end{gathered}$ |  | 6 $\times$ | $\begin{gathered} 7 \\ \frac{5 \mathrm{e}^{-}}{} \frac{2 \mathrm{e}^{-}}{7 \mathrm{p}^{+}} \\ \mathrm{N}^{-3} \end{gathered}$ | $\begin{gathered} 8 \\ \frac{6 \mathrm{e}^{-}}{} \\ \frac{2 \mathrm{e}^{-}}{} \\ 8 \mathrm{p}^{+} \\ \mathrm{O}^{2-} \end{gathered}$ | $\begin{gathered} 9 \\ \frac{7 \mathrm{e}^{-}}{} \\ 2 \mathrm{e}^{-} \\ 9 \mathrm{p}^{+} \\ \mathrm{F}^{-} \end{gathered}$ | 10 $\times$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & 11 \\ & \frac{8 \mathrm{e}^{-}}{} \\ & \frac{2 \mathrm{e}^{-}}{11 \mathrm{p}^{+}} \\ & \mathrm{Na}^{+} \end{aligned}$ | $\begin{aligned} & 12 \\ & \frac{8 \mathrm{e}^{-}}{} \\ & \frac{2 \mathrm{e}^{-}}{12 \mathrm{p}^{+}} \\ & \mathrm{Mg}^{2+} \end{aligned}$ | $\begin{aligned} & 13 \\ & \frac{8 \mathrm{e}^{-}}{} \\ & \frac{2 \mathrm{e}^{-}}{13 \mathrm{p}^{+}} \\ & \mathrm{Al}^{+} \end{aligned}$ | $\begin{aligned} & 14 \\ & X \end{aligned}$ | $\begin{gathered} 15 \\ \frac{8 \mathrm{e}^{-}}{} \\ \frac{8 \mathrm{e}^{-}}{2 \mathrm{e}^{-}} \\ \frac{15 \mathrm{p}^{+}}{\mathrm{P}^{-}} \end{gathered}$ | $\begin{gathered} 16 \\ \frac{8 \mathrm{e}^{-}}{} \\ \frac{8 \mathrm{e}^{-}}{\underline{2 \mathrm{e}^{-}}} \\ 16 \mathrm{p}^{+} \\ \mathrm{S}^{2-} \end{gathered}$ | $\begin{gathered} 17 \\ \frac{8 \mathrm{e}^{-}}{} \\ \frac{8 \mathrm{e}^{-}}{\underline{2 \mathrm{e}^{-}}} \\ 17 \mathrm{p}^{+} \\ \mathrm{Cl}^{-1} \end{gathered}$ | X |
| $\begin{gathered} 19 \\ \underline{8 \mathrm{e}^{-}} \\ \underline{8 \mathrm{e}^{-}} \\ \underline{2 \mathrm{e}^{-}} \\ 19 \mathrm{p}^{+} \\ \mathrm{K}^{+} \end{gathered}$ | $\begin{aligned} & 20 \\ & \frac{8 \mathrm{e}^{-}}{} \\ & \frac{8 \mathrm{e}^{-}}{\underline{2 \mathrm{e}^{-}}} \\ & 20 \mathrm{p}^{+} \\ & \mathrm{Ca}^{2+} \end{aligned}$ |  |  |  |  |  |  |

## A quick review

- Elements
- Pure substances composed of 1 type of atom
- Everything on the periodic table
- Compounds
- Pure substances that have more then 1 type of atom
- Mixtures
- Substances with made of more then one compound


## A quick review

- Physical properties
- Chemical properties
- Physical Changes
- Chemical Changes


## Previously

- The periodic table
- Metals and Nonmetals
- Groups/Families
- Periods]
- The Atom
- Protons
- Electrons
- Neutrons



## Last Class

- Energy Levels (2, 8, 8 rules)
- Ions: elements that do not have the same number of protons and electrons
- They have a charge
- Ex:

$$
\mathrm{Ca}^{2+}
$$

## Ions

- Cations: Positive Ions
- Formed when elements lose electrons
- Anions: Negative lons
- Formed with elements gain electrons


## Naming lons (Notes: pg 5) Write this down!!

- To name ions:
- Cations
- element name + the word "ion"
- Ex: Try:
- $\mathrm{Na}=$ sodium atom Mg
- $\mathrm{Na}^{+}=$sodium ion $\mathrm{Mg}^{2+}$


## Naming lons (Notes: pg 5)

- To name ions:
- Anions
- stem of element name + "ide" + the word "ion"
- Ex: Try:
- $\mathrm{Cl}=$ chlorine atom

F

- $\mathrm{Cl}^{-}=$chloride ion

F-

More Practice:
S
0
N
P

## Homework:

- Worksheet \# 3 - Atoms and Ions

| $\#$ | English Name | International <br> Symbol | Number of <br> Proto <br> ns | Number of <br> Electron <br> s | Number of <br> electron <br> s lost or <br> gained | Net <br> Cha <br> rge |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Eg. | Sodium ion | $\mathrm{Na}^{+}$ | 11 | 10 | Lost 1 | $1+$ |
| 1 | Neon atom |  |  |  |  |  |
| 2 | Lithium ion |  |  |  | Lost 1 |  |
| 3 |  |  | 47 |  |  | $1+$ |
| 4 |  |  |  | 18 |  | $2-$ |

## Homework Check and Review

- Worksheets \# 1,2, and 3 should be done
- Today:
- Review Worksheet \#3 - step by step
- Introduce Naming Ionic Compounds
- Review Ecology Test \#2

| \# | English Name | International Symbol | Number of Proto ns | Number of Electr ons | Number of electrons lost or gained | Net Char ge |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Eg. | Sodium ion | $\mathrm{Na}^{+}$ | 11 | 10 | Lost 1 | 1+ |
| 1 | Neon atom |  |  |  |  |  |
| 2 | Lithium ion |  |  |  | Lost 1 |  |
| 3 |  |  | 47 |  |  | $1+$ |
| 4 |  |  |  | 18 |  | 2- |
| 5 |  | Si |  |  |  |  |
| 6 |  |  | 33 | 36 |  |  |
| 7 |  |  |  | 54 | Lost 1 |  |
| 8 |  |  | 30 | 28 |  |  |
| 9 |  |  |  | 1 | 0 |  |
| 10 |  | P |  |  |  |  |


| Name | Symbol | P+ | Loss or gain? |  | Charge |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 11 |  | Ca $^{2+}$ |  |  |  |  |
| 12 | Selenide ion |  |  |  |  |  |
| 13 |  |  | 13 |  |  | $3+$ |
| 14 |  | Rb+ |  |  |  |  |
| 15 |  |  | 18 | 18 |  |  |
| 16 |  |  | 8 | 10 |  |  |
| 17 | lodine atom |  |  |  |  |  |
| 18 |  |  |  |  |  |  |
| 19 |  |  |  |  |  |  |
| 20 |  |  |  |  |  |  |

## Ionic Compounds (Notes: pg. 5) (Text: pg 188-195)

- Ionic Compounds are composed of a cation and an anion
- Cation
- Usually a metal ( $\mathrm{Na}^{+}, \mathrm{Mg}^{2+}, \mathrm{Li}^{+}, \mathrm{Ca}^{2+}, \mathrm{Fe}^{3+}$, etc)
- Exception - Ammonium, $\mathrm{NH}_{4}{ }^{+}$
- Anion
- Can be a nonmetal ( $\left.\mathrm{Cl}^{-}, \mathrm{N}^{3-}, \mathrm{O}^{2-}\right)$
- Polyatomic lons $\left(\mathrm{NO}_{3}^{-}, \mathrm{PO}_{4}{ }^{3-}, \mathrm{CH}_{3} \mathrm{COO}^{-}\right)$


## Ionic Compounds

- All are solids at SATP (Standard Ambient Temperature and Pressure) of 250C and 100 kPa.
- When they dissolve in water, they form aqueous solutions that conduct electricity
- they are electrolytes
- These compounds form after an electron transfer:


## Ionic Compounds

- These compounds form after an electron transfer:
- Ex: Calcium and Chlorine form Calcium Chloride
- Homework Check:
- Read pg 188-189
- Answer questions \#1,2,3


## Ionic Compounds (metals with nonmetals)

- the resulting ions (cations and anions) are attracted to each other (since they are oppositely charged) and they form ionic bonds
- Together all of the ions present form an ionic crystal lattice in which the net charge is zero
- Eg: (1) in a sample of sodium chloride, NaCl , for every $\mathrm{Na}^{+}$ ion there is one $\mathrm{Cl}^{-}$ion
- Eg: (2) in a sample of calclium chloride, $\mathrm{CaCl}_{2}$, for every $\mathrm{Ca}^{2+}$ ion there are $2 \mathrm{Cl}^{-}$ions


## Crystal Lattice



NaCl : A Formula Unit
expression of the simplest whole number ratio of cations to anions

## Types of Ionic Compounds

- Monatomic lons (Simple Ions)
- Single atoms that have lost or gained one or more electrons
- Form Binary lonic Compounds (2 simple ions)
- Eg. $\mathrm{Na}^{+} \mathrm{Cl}^{-}$
- Polyatomic Ions (Complex Ions)
- Cations or anions composed of a group of atoms with a net positive or negative charge
$-\mathrm{NH}_{4}^{+} \quad \mathrm{NO}_{2}{ }^{-} \quad \mathrm{NO}_{3}{ }^{-} \quad \mathrm{CO}_{3}{ }^{2-}$
- Ammonium ion Nitrite ion Nitrate ion Carbonate ion


## Types of lons and Compounds

- Multivalent Ions
- certain transition metals can form more than one type of ion, each with a different charge
- Eg. $\mathrm{Fe}^{3+} \quad \mathrm{Fe}^{2+}$
- The more commonly occurring is listed on top, thus $\mathrm{Fe}^{3+}$ is more common than $\mathrm{Fe}^{2+}$
- Others:
- Hydrated Ionic Compounds
- Water molecules are loosely held within the ionic compound
- Eg. $\mathrm{ZnCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O} \quad \mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$


## Binary Ionic Compounds (Write this Down)

- Composed of two different ions

| Name | Formula |
| :---: | :---: |
| sodium chloride | NaCl |
| magnesium oxide | MgO |
| lithium nitride | $\mathrm{Li}_{2} \mathrm{~N}$ |
| aluminum oxide | $\mathrm{Al}_{2} \mathrm{O}_{3}$ |

- Only two different types of elements!


## Binary ionic formulas

$\bullet$ Given the name, write the formula:

Steps

1. Write the symbols for the ions
2. Balance the charges
3. Write the chemical formula

Remember:

## $\mathrm{BaCl}_{2}$ not $\mathrm{BaCl}^{2}$

$\nearrow$

2.
3.

## Example:

silver oxide

## beryllium bromide

## What about these?

aluminum oxide zinc nitride

## Nomenclature (Naming)

- Name the cation and anion and put them together

NaI
$\mathrm{CaI}_{2}$
$\mathrm{Al}_{2} \mathrm{~S}_{3}$

## Worksheet \#4 (Pass in tomorrow)

| $\#$ | Chemical <br> Formula | Name of Compound |
| :--- | :--- | :--- |
| Eg. | $\mathrm{CaCl}_{2}$ | Calcium chloride |
| 1. |  | Potassium chloride |
| 2. | MgO |  |
| 3. |  | Aluminum chloride |

## Science 1206

Complex Ionic Compounds

## Write this Down!!

## Complex Ions

- More then one type of atom is in the ion
- Listed on the back of periodic table

Table of Some Common Polyatomic Ions


## Write this Down!!

## Give formulas for the following:

- potassium bromate
- silver nitrate
- aluminum cyanide
- ammonium carbonate (2 complex ions)
- calcium hydrogen carbonate


## Name the following formulas

- Identify cation and anion first (Look at the tables)
- $\mathrm{NaCH}_{3} \mathrm{COO}$
- $\mathrm{KMnO}_{4}$


## Continued,,,

- $\mathrm{Na}_{3} \mathrm{BO}$ Man, this is COMPLEX !!!

If you see 'lots of letters' --

$-\mathrm{NH}_{4} \mathrm{NO}_{3}$

## Worksheets

- Worksheet \# 4 - Binary Ionic Compounds
- Worksheet \# 5 - Complex Ions
- Both due to be passed in on Tuesday


## Science 1206

Multivalent Ions

74

## Worksheets Due:

- Worksheet \# 4 - Binary Ionic Compounds
- Worksheet \# 5 - Complex Ions
- Both due to be passed in Today


## Quick Review

- Binary Ionic Compounds
- Complex Ions


## Write this Down!!

## Multivalent Ions

## - Some elements can form more then one ion

|  | IVB | VB | VIB | VIIB |  | - |  | IB |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ${ }^{3+}$ | $\left.\right\|_{\substack{22 \\ 1.5 \\ \mathrm{Ti}^{\text {titanium }} \\ 47.90}} ^{{ }^{3+}}$ | $\underbrace{\mathrm{V}^{4+}}_{\substack{23 \\ 1.6 \\ \text { vanadium } \\ 50.94}}$ | $\underbrace{\mathrm{Cr}^{2+}}_{\substack{24 \\ \text { chromium } \\ 52.00}}$ | ${ }_{\substack{25 \\ 1.5 \\ \text { manganese } \\ \text { M4.94 }}}^{{ }^{2+}}$ | $\underbrace{{ }^{3+}}_{\substack{26 \\ 1.8 \\ \text { iron } \\ 55.85}}$ | $\begin{array}{\|cc\|} \hline 27 & \\ { }^{2+8} & { }^{2+} \\ & { }^{3+} \text { cobalt } \\ 58.93 \end{array}$ |  | $\left\lvert\, \begin{array}{cc} 29 & { }^{2+} \\ 1.9 & { }^{1+} \\ \mathrm{Cu}^{\text {copper }} \\ 63.55 \\ \hline \end{array}\right.$ |
| ${ }^{3+}$ | $\left.\right\|_{\substack{40 \text { irconium } \\ 91.22}} ^{\mathrm{Znr}^{4+}}$ | $\left\lvert\, \begin{array}{ccc} 41 . & { }^{5+} \\ 1.6 & \mathrm{Nb}^{3+} \\ \text { niobium } \\ 92.91 \end{array}\right.$ | $\underbrace{\text { Mo }}_{\substack{42 \\ 1.8 \\ \text { molybdenum } \\ 95.94}}$ | $\begin{array}{ll} 43 \\ { }^{4.9} & \\ { }^{7+} \\ \substack{\text { technetium } \\ 98.91} \\ \hline \end{array}$ | $\left\lvert\, \begin{array}{ccc} 44 & { }^{3+} \\ 2+2 \\ { }^{3+}{ }^{4+}{ }^{4+}{ }^{\text {rutheni um }} \\ 101.07 \end{array}\right.$ | $\left.\right\|_{\substack{45 \\ 2.2 \\ \\ \text { rhodium } \\ 102.91}}{ }^{3+}$ | $\left\lvert\, \begin{array}{cc} 46 & { }^{2+} \\ 2+2 \\ \text { Pd }^{4+} \\ \text { palladium } \\ 106.40 \end{array}\right.$ | $\left.\begin{array}{\|cc} 47 & \\ 1.9 & \\ \text { Ag } \\ \text { silver } \\ 107.87 \end{array} \right\rvert\,$ |
| ds | $\left.\right\|_{\substack{72 \\ 1.3 \\ \text { hafnium } \\ \text { haf } \\ 178.49}}$ | $\left\lvert\, \begin{array}{ll} 73 \\ 1.5 \\ \text { Ta } \\ \text { tantalum } \\ 180.95 \end{array}\right.$ | $$ | $\begin{gathered} 75 \\ { }^{7+}{ }^{7+} \\ \text { Renium } \\ 186.21 \\ \hline \end{gathered}$ | $\left\lvert\, \begin{array}{cc} 76 & \\ 2.2 \\ \text { Os } \\ \text { Osmium } \\ 190.20 \end{array}\right.$ | $$ | $\left.\right\|_{\substack{78 \\ 2.2 \\ \text { platinum }^{\text {plat }} \\ 195.09}} ^{{ }^{4+}}$ |  |

## Multivalent Ions



- the most common ion is listed on top
- $\mathrm{Fe}^{3+}$ and $\mathrm{Cl}^{-}$ $\mathrm{Fe}^{2+}$ and $\mathrm{Cl}^{-}$


## Naming Rules

- Named the same as other ionic compounds, but we specify the charge using Roman Numerals
- Ex:
- Iron (III) chloride
- Iron (II) chloride

$$
\begin{aligned}
& 1=\mathrm{I} \\
& 2=\mathrm{III} \\
& 3=\mathrm{IIII} \\
& 4=\mathrm{IV} \\
& 5=\mathrm{V} \\
& 6=\text { VI } \\
& 7=\text { VII } \\
& 8=\text { VIII }
\end{aligned}
$$

## Names $\rightarrow$ Formulas

Ex: copper (I) nitrate

Ex: copper (II) nitrate

## Names $\rightarrow$ Formulas continued

Ex: ruthenium (IV) oxide

Ex: bismuth (V) carbonate

## Formulas $\rightarrow$ Names

- Need to identify which ion is present
- Use the anion (-) to find the charge of the cation (+)
- Ex:
- 1. $\mathrm{CrF}_{3}$

2. CrS

| 24 | 3 |
| :---: | :---: |
|  | 2 |
| $\begin{gathered} \text { Cr } \\ \text { chromium } \\ 52.00 \end{gathered}$ |  |
|  |  |

## Cntd...

## 3. $\mathrm{Pd}\left(\mathrm{CO}_{3}\right)_{2}$

| 46 |  | $2+$ |
| :---: | :---: | :---: |
| 2.2 |  | $4+$ |
| Pd |  |  |
| palladium |  |  |
| 106.40 |  |  |

4. $\mathrm{Au}_{2} \mathrm{O}_{3}$

$|$| 79 |  | $3+$ |
| :---: | :---: | :---: |
| 2.4 |  | $1+$ |
|  | Aul |  |
| gold |  |  |
| 196.97 |  |  |

## Worksheets

- Worksheet \# 6 - Multivalent Ions
- Test: Next week


## Science 1206

Hydrated Compounds

## Homework Check

- Worksheet \#6 - Multivalent Ions
- Return Worksheets \#4 \& \#5
- Fix mistakes are return to me for $1 / 2$ marks!!

| $\#$ | Chemical <br> Formula |  | Name of Compound |
| :---: | :---: | :---: | :---: |
| Eg. | $\mathrm{Cu}_{2} \mathrm{~S}$ | $2 \mathrm{Cu}^{+} \quad \mathbf{S}^{2-}$ | Copper(I) sulfide |
| 1. | $\mathrm{AuCl}_{3}$ |  |  |
| 2. |  |  | Mercury(II) oxide |
| 3. | $\mathrm{Sb}_{2} \mathrm{~S}_{3}$ |  |  |
| 4. | $\mathrm{~V}_{2} \mathrm{O}_{5}$ |  | Iron(III) iodide |
| 5. |  |  | Copper(II) sulfide |
| 6. |  |  |  |
| 7. | FeS |  | Tin(II) fluoride |
| 8. |  |  |  |


| 10. |  |  | Lead(IV) oxide |
| :---: | :---: | :---: | :---: |
| 11. |  |  | Chromium(III) oxide |
| 12. | HgS |  |  |
| 13. |  |  | Uranium(VI) fluoride |
| 14. | $\mathrm{SnO}_{2}$ |  |  |
| 15. |  |  | Uranium(IV) oxide |
| 16. | $\mathrm{Fe}_{2} \mathrm{O}_{3}$ |  |  |
| 17. |  |  | Cobalt(II) chloride |
| 18. | $\mathrm{TiO}_{2}$ |  |  |
| 19. | $\mathrm{NiBr}_{2}$ |  |  |
| 20. |  |  | Copper(II) chloride |

## Write this Down!!!

## Hydrated Compounds (pg. 6 notes, not in textbook)

- Ionic compounds sometime have water molecules held loosely


## Ex:

Copper(II) sulfate pentahydrate

Cobalt chloride dihydrate

$$
\begin{aligned}
& 1=\text { mono } \\
& 2=\text { di } \\
& 3=\text { tri } \\
& 4=\text { tetra } \\
& 5=\text { penta } \\
& 6=\text { hexa } \\
& 7=\text { hepta } \\
& 8=\text { octa } \\
& 9=\text { nona } \\
& 10=\text { deca }
\end{aligned}
$$

## Name $\rightarrow$ Formula

1. Give the formula as usual
2. Add " $\bullet \mathrm{HH}_{2} \mathrm{O}$ " on the end

Ex. Zinc chloride hexahydrate

## continued...

## Ex: copper(II) sulfate pentahydrate

$$
\begin{aligned}
& 1=\text { mono } \\
& 2=\text { di } \\
& 3=\text { tri } \\
& 4=\text { tetra } \\
& 5=\text { penta } \\
& 6=\text { hexa } \\
& 7=\text { hepta } \\
& 8=\text { octa } \\
& 9=\text { nona } \\
& 10=\text { deca }
\end{aligned}
$$

## Formula $\rightarrow$ Name

- 1. Name the ionic compound
- 2. Add prefixhydrate on the end
- Ex: $\mathrm{Ba}(\mathrm{OH})_{2} \cdot 8 \mathrm{H}_{2} \mathrm{O}$

$$
\begin{aligned}
& 1=\text { mono } \\
& 2=\text { di } \\
& 3=\text { tri } \\
& 4=\text { tetra } \\
& 5=\text { penta } \\
& 6=\text { hexa } \\
& 7=\text { hepta } \\
& 8=\text { octa } \\
& 9=\text { nona } \\
& 10=\text { deca }
\end{aligned}
$$

## Continued...

## Ex:

$$
\begin{array}{ll}
\mathrm{NiCl}_{2} \cdot \mathrm{H}_{2} \mathrm{O} & \begin{array}{l}
1 \\
2
\end{array}=\text { mono } \\
3 & =\text { tri } \\
4 & =\text { tetra } \\
5 & =\text { penta } \\
6 & =\text { hexa } \\
7 & =\text { hepta } \\
8 & =\text { octa } \\
9 & =\text { nona } \\
10 & =\text { deca }
\end{array}
$$

Don't forget to check if the cation is MULTIVALENT!!!

## Homework

- Worksheet \#7
- Fix/Finish Worksheets 4 \& 5
- Remember:
- Lunchtime tutorial today
- Friday @ 3:00pm


## Test Outline

- Classifications of Matter
- Pure substances
- Compounds
- Mixtures
- Properties and Changes of Matter
- Elements and the Periodic Table
- Groups/Families
- Periods
- The Atom
- \# of protons, electrons, neutrons
- Energy diagrams
- Ions
- Naming and Formula Writing
- Binary Ionic Compounds
- Complex Ions
- Multivalent cations
- Hydrated compounds


## Test

- 25 Multiple Choice
- Short Answer
- Naming
- Formula Writing


## Homework Check

- Worksheet \#6 - Multivalent Ions
- Worksheet \#7 - Hydrated Compounds
- Return Worksheets \#4 \& \#5
- Fix mistakes are return to me for $1 / 2$ marks!!

| 1. | $\mathrm{AuCl}_{3}$ | $\mathrm{Au}^{3+} 3 \mathrm{Cl}^{-}$ |
| :---: | :---: | :---: |
| 2. | HgO | $\mathrm{Hg}^{2+} \mathrm{O}^{2-}$ |
| 3. | $\mathrm{Sb}_{2} \mathrm{~S}_{3}$ | $2 \mathrm{Sb}^{3+} 3 \mathrm{~S}^{2-}$ |
| 4. | $\mathrm{V}_{2} \mathrm{O}_{5}$ | $2 \mathrm{~V}^{5+} 5 \mathrm{O}^{2-}$ |
| 5. | $\mathrm{Fel}_{3}$ | $\mathrm{Fe}^{3+} 3 \mathrm{I}^{-}$ |
| 6. | CuS | $\mathrm{Cu}^{2+} \mathrm{S}^{2-}$ |
| 7. | FeS | $\mathrm{Fe}^{2+} \quad \mathrm{S}^{2-}$ |
| 8. | $\mathrm{SnF}_{2}$ | $\mathrm{Sn}^{2+} 2^{\text {F- }}$ |
| 9. | $\mathrm{MnO}_{2}$ | $\mathrm{Mn}^{4+} 2^{\text {O }}{ }^{\text {2- }}$ |
| 10. | $\mathrm{PbO}_{2}$ | $\mathrm{Pb}^{2+} 2 \mathrm{O}^{2-}$ |
| 11. | $\mathrm{Cr}_{2} \mathrm{O}_{3}$ | $2 \mathrm{Cr}^{3+} 3 \mathrm{O}^{2-}$ |
| 12. | HgS | $\mathrm{Hg}^{2+} \mathrm{S}^{2-}$ |
| 13. | $\mathrm{UF}_{6}$ | $\mathrm{U}^{6+} 6 \mathrm{~F}$ |
| 14. | $\mathrm{SnO}_{2}$ | $\mathrm{Sn}^{2+} 2 \mathrm{O}^{2-}$ |
| 15. | $\mathrm{UO}_{2}$ | $\mathrm{U}^{4+} \quad 2 \mathrm{O}^{2-}$ |
| 16. | $\mathrm{Fe}_{2} \mathrm{O}_{3}$ | $2 \mathrm{Fe}^{3+} 3 \mathrm{O}^{2-}$ |
| 17. | $\mathrm{CoCl}_{2}$ | $\mathrm{Co}^{2+} 2 \mathrm{Cl}^{-}$ |
| 18. | $\mathrm{TiO}_{2}$ | $\mathrm{Ti}^{4+} 2 \mathrm{O}^{2-}$ |
| 19. | $\mathrm{NiBr}_{2}$ | $\mathrm{Ni}^{2+} 2 \mathrm{Br}^{-}$ |
| 20. | $\mathrm{CuCl}_{2}$ | $\mathrm{Cu}^{2+} \quad 2 \mathrm{Cl}$ |

Gold (III) chloride
Mercury(II)oxide
Antimony (III) sulfide
Vanadium (V) oxide Iron (III) iodide
Copper (II) sulfide Iron (II) Sulfide

Manganese (IV) oxide
Lead (IV) oxide
Chromium (III) oxide
Mercury (II) sulfide
Uranium (VI) fluoride Tin (II) oxide
Uranium (IV) oxide
Iron (III) oxide
Cobalt (II) chloride
Titanium (IV) dioxide
Nickel (II) bromide
Copper (II) chloride

| Eg. | Copper (II) sulfate pentahydrate | $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ |
| :---: | :---: | :---: |
| 1 | Magnesium sulfate heptahydrate | $\mathrm{MgSO}_{4} 7 \mathrm{H}_{2} \mathrm{O}$ |
| 2 | Sodium carbonate decahydrate | $\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot 10 \mathrm{H}_{2} \mathrm{O}$ |
| 3 | Magnesium chloride hexahydrate | $\mathrm{MgCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ |
| 4 | Barium chloride dihydrate | $\mathrm{BaCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ |
| 5 | Cadmium nitrate tetrahydrate | $\mathrm{Cd}\left(\mathrm{NO}_{3}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ |
| 6 | Zinc chloride hexahydrate | $\mathrm{ZnCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ |
| 7 | Zinc sulphate heptahydrate | $\mathrm{ZnSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$ |
| 8 | Lithium chloride tetrahydrate | $\mathrm{LiCl} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ |
| 9 | Sodium thiosulfate pentahydrate | $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ |
| 10 | Cobalt(II)chloride hexahydrate | $\mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ |
| 11 | Aluminum chloride hexahydrate | $\mathrm{AlCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ |
| 12 | Calclium chloride dihydrate | $\mathrm{CaCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ |
| 13 | Barium hydroxide octahydrate | $\mathrm{Ba}(\mathrm{OH})_{2} \cdot 8 \mathrm{H}_{2} \mathrm{O}$ |
| 14 | Nickel(II)chloride hexahydrate | $\mathrm{NiCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ |
| 15 | Sodium sulfate decahydrate | $\mathrm{Na}_{2} \mathrm{SO}_{4} \cdot 10 \mathrm{H}_{2} \mathrm{O}$ |
| 16 | Iron(III)phosphate tetrahydrate | $\mathrm{FePO}_{4} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ |
| 17 | Iron (III) sulfate heptahydrate | $\mathrm{FeSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$ |
| 18 | Calcium sulphate dihydrate | $\mathrm{CaSO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ |
| 19 | Tin (IV) chloride pentahydrate | $\mathrm{SnCl}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ |
| 20 | Barium bromide tetrahydrate | $\mathrm{BaBr}_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ |

## Review:

- Worksheets


## Science 1206

Molecular Compounds

2

## Molecular Compounds (Handouts pg 8, Text pg 201)

- MOLECULAR SUBSTANCES:
- are solids, liquids or gases at SATP
- if soluble, dissolve in water to form colorless aqueous solutions that do not conduct electricity
- they are non-electrolytes
- they contain only nonmetal atoms


## Molecular Compounds

- Molecule:
- a particle of a molecular substance that contains a fixed number of covalently-bonded nonmetal atoms
- Covalent Bond:
- formed from the sharing of valence electrons between nonmetal atoms, which results in an electron structure that is the same as a noble gas, for each atom in the molecule


## Covalent Bonding

- Hydrogen
- Chlorine
- Carbon dioxide


## Note: Ionic vs Molecular

## Ionic Compounds $\quad$ Molecular Compounds

Cation (+) and Anion (-)
Electrons exchanged
Ionic bonds
Solids at Room Temp
Electrolytes

Only nonmetals
Electrons shared
Covalent bonds
Gas, liquids, and solids
Nonelectrolytes

## 1. Molecular Elements

- Only contain 1 type of nonmetal

| Type | Molecular Elements |
| :---: | :---: |
| Monatomic - one atom | Noble gases: $\mathrm{He}_{(\mathrm{g})} \mathrm{Ne}_{(\mathrm{g})} \mathrm{Ar}_{(\mathrm{g})} \mathrm{Kr}_{(\mathrm{g})} \mathrm{Xe}_{(\mathrm{g})} \mathrm{Rn}_{(\mathrm{g})}$ |
| Diatomic - two atoms/molecule | Hydrogen, Oxygen, Nitrogen and the Halogens <br> The "HONorable Halogens" $\mathrm{H}_{2(\mathrm{~g})} \mathrm{O}_{2(\mathrm{~g})} \mathrm{N}_{2(\mathrm{~g})} \quad \mathrm{F}_{2(\mathrm{~g})} \quad \mathrm{Cl}_{2(\mathrm{~g})} \quad \mathrm{Br}_{2(\mathrm{l})} \mathrm{I}_{2(\mathrm{~s})} \mathrm{At}_{2(\mathrm{~s})}$ |
| Polyatomic - more than 2 atoms/molecule | ozone $=\mathrm{O}_{3(\mathrm{~g})}$ Phosphorus $=\mathrm{P}_{4(\mathrm{~s})}$ Sulfur (Sulphur) $=\mathrm{S}_{8(\mathrm{~s})}$ |

## 2. Molecular Compounds

Molecular Compounds

- a) Common (to memorize):
$\mathrm{H}_{2} \mathrm{O}_{(1)}=$ water
$\mathrm{CH}_{4(\mathrm{~g})}=$ methane
$\mathrm{CH}_{3} \mathrm{OH}_{(1)}=$ methanol
$\mathrm{H}_{2} \mathrm{O}_{2(1)}=$ hydrogen peroxide
$\mathrm{C}_{3} \mathrm{H}_{8(\mathrm{~g})}=$ propane
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}_{(1)}=$ ethanol
$\mathrm{NH}_{3(\mathrm{~g})}=$ ammonia
$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6(\mathrm{~s})}=$ glucose
$\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11(\mathrm{~s})}=$ sucrose


## 2. Molecular Compounds

-B. Binary Molecular Compounds

- 2 different nonmetals
$-\begin{array}{lll}\mathrm{CO} & \mathrm{CO}_{2} & \mathrm{CCl}_{4}\end{array}$


## Writing Molecular Formulas

- General Rules

1. Write each atom symbol.
2. Each prefix indicates the subscript for the nonmetal atom that precedes it (\# of atoms present).
3. If no prefix is present, then there is only one atom of that nonmetal present. Monoxide = one oxygen atom present.

Examples: Carbon monoxide
Carbon dioxide
Carbon tetrachloride
Suphur trioxide
Dinitrogen monoxide

## Naming Binary Molecular Compounds

## Naming Molecular Substances <br> General Rules

1. First element is named in full.
2. Second element name is shortened and given an ide ending.
3. Use prefixes (same as for hydrates) to indicate the number of each kind of atom.

- The prefix mono is usually only used for molecules with 1 atom of oxygen (monoxides).
- Certain Hydrogen compounds (those with H first in the formula) do not use prefixes.
- $\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})=$ hydrogen sulfide, not dihydrogen sulfide


## Examples

- Examples:
$\mathrm{NO}_{(\mathrm{g})}$
$\mathrm{P}_{4} \mathrm{O}_{6(\mathrm{~s})}$
$\mathrm{SO}_{2(\mathrm{~g})}$
$\mathrm{SO}_{3(\mathrm{~g})}$
$\mathrm{N}_{2} \mathrm{O}_{(\mathrm{g})}$
$\mathrm{PCl}_{3(\mathrm{~s})}$
$\mathrm{NI}_{3(\mathrm{~s})}$


## Homework

- Worksheet \#8


## Science 1206

Acids and Bases

4

## Homework Check

- Worksheet 8 - Molecular compounds

| Eg. | $\mathrm{CCl}_{4}$ | Carbon tetrachloride |
| :---: | :---: | :---: |
| 1 |  | Nitrogen |
| 2 | $\mathrm{O}_{2}$ | Argon |
| 3 |  |  |
| 4 | $\mathrm{CO}_{2}$ | The other noble gases (besides Argon) |
| 5 | $\mathrm{NO}_{2}$ |  |
| 6 | $\mathrm{NO}_{2}$ |  |
| 7 |  | Sulphur dioxide |
| 8 |  |  |


| 9 | $\mathrm{SO}_{3}$ |  |
| :---: | :---: | :---: |
| 10 |  | Carbon monoxide |
| 11 |  | Ozone |
| 12 |  | Ethanol |
| 13 | $\mathrm{P}_{4} \mathrm{O}_{10}$ | Sucrose |
| 14 | $\mathrm{P}_{4} \mathrm{O}_{6}$ |  |
| 15 |  |  |
| 16 |  | Chlorine dioxide (sulfur) |
| 17 |  | Methanol |
| 18 |  |  |


| 19 | $\mathrm{P}_{4}$ |  |
| :---: | :---: | :---: |
| 20 |  | Ammonia |
| 21 | $\mathrm{CH}_{4}$ |  |
| 22 | $\mathrm{H}_{2} \mathrm{O}$ |  |
| 23 |  | Dinitrogen monoxide |

## Acids (p. 10 notes)

- ACIDS
- Molecules that ionize in water to produce hydrogen ions, $\mathrm{H}+(\mathrm{aq})$, ions which give acids their properties
- Properties of acids:
- Conduct electricity
- Turn blue litmus paper red
- Taste sour
- React with many metals to produce hydrogen gas, H2(g)
- Have a pH value of less than 7
- Neutralize or partially neutralize bases


## Acids

- General Formula: $\mathrm{H}_{[ } \quad$ (aq) ${ }^{\text {or }}$
$\mathrm{COOH}_{(a q)}$
- Note: not all hydrogen containing compounds are acids
- Eg: $\mathrm{NH}_{3} \quad \mathrm{CH}_{4} \quad \mathrm{CH}_{3} \mathrm{OH} \quad \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$


## Naming Acids

- General Rules

1. Name the hydrogen compound like an ionic compound
2. Then convert the ionic name to the acid name
hydrogen hydrogen $\qquad$ ide becomes hydro ite becomes $\qquad$ ate becomes $\qquad$ ic acid hydrogen $\qquad$ ic acid ous acid

Naming Acids

| hydr | ide becomes hydro | ic acid |
| :---: | :---: | :---: |
| hydrogen | ite becomes | ous acid |
| hydrogen | ate becomes | ic ac |


| Acid Formula | Ionic Name | Acid Name |
| :--- | :--- | :--- |
| $\mathrm{HCl}_{(\mathrm{aq)}}$ |  |  |
| $\mathrm{HCN}_{(\mathrm{aq)}}$ |  |  |
| $\mathrm{HNO}_{2(\mathrm{aq)}}$ |  |  |
| $\mathrm{H}_{2} \mathrm{SO}_{3(\mathrm{aq)}}$ |  |  |
| $\mathrm{HNO}_{3(\mathrm{aq)}}$ |  |  |
| $\mathrm{H}_{2} \mathrm{SO}_{4(\mathrm{aq)}}$ |  |  |
| $\mathrm{H}_{3} \mathrm{PO}_{4(\mathrm{aq)}}$ |  |  |
| $\mathrm{CH}_{3} \mathrm{COOH}_{(\mathrm{aq)}}$ |  |  |

## Writing Acid Formulas

## General Rules:

1. Translate acid name into ionic name:
hydro__ic acid $\rightarrow$ hydrogen ___ide
__ous acid $\rightarrow$ hydrogen___ite
ic acid hydrogen___ate
2. Write chemical formulas for each ion, using rules for writing formulas for ionic compounds.
3. Hydrogen symbol is written first (cation), except for carboxylic acids (those with COO group), in which case hydrogen is placed at the end eg: CH 3 COOH
4. Give the state as aqueous $=(\mathrm{aq})$.

$$
\begin{aligned}
& \text { hydro___ic acid } \rightarrow \text { hydrogen___ide } \\
& \hline
\end{aligned}
$$

## Examples

| Acid Name | Ionic Name | Formula |
| :--- | :--- | :--- |
| Hydroiodic acid |  |  |
| Chlorous acid |  |  |
| Chloric acid |  |  |
| Boric acid |  |  |
| Benzoic acid |  |  |

## Homework

- Worksheet \#9

12
5
ide becomes hydro ite becomes $\qquad$ ate becomes $\qquad$
ic acid
hydrogen $\qquad$ ic acid

| E | $\mathrm{HCl}_{(\mathrm{aq})}$ | $\mathrm{H}^{+} \mathrm{Cl}^{-}$hydrogen <br> chloride | Hydrochloric acid |
| :---: | :---: | :---: | :---: |
| 1 | $\mathrm{HBr}_{(\mathrm{aq})}$ | Hydrogen bromide | Hydrobromic acid |
| 2 | $\mathrm{H}_{2} \mathrm{CO}_{3(\mathrm{aq})}$ | Hydrogen carbonate | Carbonic acid |
| 3 |  |  | Hypochlorous acid |
| 4 | $\mathrm{H}_{2} \mathrm{CrO}_{4(\mathrm{aq})}$ | Hydrogen chromate | Chromic acid |
| 5 |  |  | Chlorous acid |
| 6 | $\mathrm{H}_{2} \mathrm{~S}_{(a q)}$ | Hydrogen sulfide | Hydrosulfuric acid |
| 7 | $\mathrm{H}_{3} \mathrm{BO}_{3(\mathrm{aq})}$ | Hydrogen bromate | bromic acid |
| 8 | $\mathrm{HI}_{(\mathrm{aq})}$ | Hydrogen iodide | Hydroiodic acid |
| 9 |  |  | Oxalic acid |
| 10 | $\mathrm{HClO}_{4(\mathrm{aq})}$ | Hydrogen chlorate | Chlroic acid |

hydrogen
hydrogen
$\qquad$ ide becomes hydro ite becomes $\qquad$ ate becomes $\qquad$ hydrogen $\qquad$ ic acid ous acid ic acid

| 11 |  |  | Nitrous acid |
| :---: | :---: | :---: | :---: |
| 12 |  |  | Benzoic acid |
| 13 | $\mathrm{H}_{2} \mathrm{SO}_{3(\mathrm{aq})}$ | Hydrogen sufite | Sulfurous acid |
| 14 |  |  | Chloric acid |
| 15 | $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{3(\mathrm{aq})}$ | Hydrogen thiosulfate | Thiosulfuric acid |
| 16 |  |  | Permanganic acid |
| 17 |  |  | Hydrofluoric acid |
| 18 | $\mathrm{HCN}_{(\mathrm{aq)}}$ | Hydrogen cyanide | Hydrocyanic acid |
| 19 |  |  | Thiocyanic acid |
| 20 |  |  | Sulphuric acid |

## Base

- Most are ionic compounds with $\mathrm{OH}^{-}$and (aq)
- Properties of bases:
- Conduct electricity
- Turn red litmus paper blue
- Taste bitter
- Feel slippery
- Have a pH value greater than 7
- Neutralize or partially neutralize acids


## Bases

- Naming Bases
- Follow the general rules given for ionic compounds $\mathrm{NaOH}_{(\mathrm{aq})}$ $\mathrm{NH}_{4} \mathrm{OH}_{(\mathrm{aq})}$
- Writing Base Formulas
- follow the general rules given for ionic compounds
lithium hydroxide
Calcium hydroxide


## WHMIS

- Workplace and Hazardous Materials Information System


## MSDS

- Material Safety Data Sheet


## Homework

- WHMIS and MSDS Worksheet
- Passed in on Monday
- Very short assignment
- Naming and Formula Review Sheet


## Science 1206

## Chemical Equations

## Pass in Assignments

- WHMIS and MSDS Worksheet
- Passed in on Monday
- Very short assignment
- Naming and Formula Review Sheet
- Get Homework Checklist


## Chemical Equations

- Show how chemicals react to form new compounds and molecules

$$
2 \mathrm{Mg}_{(\mathrm{s})}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{MgO}_{(\mathrm{s})}
$$

Reactants $\rightarrow$ Products

- The number of atoms must be conserved!!!
- We use Coefficients to balance


## Before we start:

- Learn to count the atoms:
- $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$
$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$

$$
\begin{aligned}
& \mathrm{Ca}= \\
& \mathrm{N}= \\
& \mathrm{O}=
\end{aligned}
$$

$$
\mathrm{N}=
$$

$$
H=
$$

$$
S=
$$

$$
\mathrm{O}=
$$

## Balancing Chemical Equations

Start by balancing the atom with the highest numbers:

$$
\mathrm{Mg}+\mathrm{O}_{2} \rightarrow \mathrm{MgO}
$$

## Note: Sometimes easier to balance the IONS instead of the atoms!!!

## $\mathrm{Cu}+\mathrm{AgNO}_{3} \rightarrow \mathrm{Ag}+\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$

$\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{KI} \rightarrow \mathrm{PbI}_{2}+\mathrm{KNO}_{3}$
$\mathrm{NH}_{3} \quad \rightarrow \quad \mathrm{~N}_{2}+\mathrm{H}_{2}$

13
9

## $\mathrm{CH}_{4}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$

## Try These:

1. $\mathrm{Fe}+\mathrm{O}_{2} \rightarrow \mathrm{Fe}_{2} \mathrm{O}_{3}$
2. $\mathrm{Na}+\mathrm{Cl}_{2} \rightarrow \mathrm{NaCl}$
3. $\mathrm{AsCl}_{3}+\mathrm{H}_{2} \mathrm{~S} \rightarrow \mathrm{As}_{2} \mathrm{~S}_{3}+\mathrm{HCl}$
4. $\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{NaHCO}_{3} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
5. 

$\mathrm{C}_{3} \mathrm{H}_{8}+$
$\mathrm{O}_{2} \rightarrow$
$\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$

## Homework

- Worksheet \#10 Balancing
- We will correct this at the beginning of next class
- Have it done!!!!

Test Review:

| 1. | $\ldots \mathrm{C}_{10} \mathrm{H}_{20}(5)$ | + | O270) | $\rightarrow$ | _CO ${ }_{2(6)}$ | + | $\mathrm{H}_{2} \mathrm{O}_{(6)}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2. | $\ldots \mathrm{Al}(\mathrm{OH})_{3(5)}$ | + | $\ldots{ }^{\text {HCl }}$ (ap) | $\rightarrow$ | $\ldots \mathrm{AlCl}_{3(\mathrm{aq})}$ | + | $\mathrm{HOH}_{(0)}$ |
| 3. | $\ldots C_{4} H_{8(0)}$ | + | - $0_{2(0)}$ | $\rightarrow$ | $\ldots \mathrm{CO}_{2(0)}$ | + | $\mathrm{H}_{2} \mathrm{O}_{(\mathrm{a})}$ |
| 4. | _C( ${ }_{(5)}$ | + | $-0_{2(0)}$ | $\rightarrow$ | $-^{C 0}{ }_{(9)}$ |  |  |
| 5. |  | + | - $0_{2(0)}$ | $\rightarrow$ | $\ldots \mathrm{CO}_{2(G)}$ | + | $\ldots \mathrm{C}_{2} \mathrm{O}_{(0)}$ |
| 6. | $\ldots L_{(5)}$ | + | $\ldots \mathrm{ABr}_{3(00)}$ | $\rightarrow$ | $\ldots \mathrm{LiBr}_{(a 0)}$ | + | $\ldots \mathrm{Al}(5)$ |

7. $-C_{2} \mathrm{H}_{(6)}+\underset{-}{ } \mathrm{O}_{2(6)} \rightarrow-\mathrm{CO}_{2(6)}+\underset{-}{\mathrm{H}_{2} \mathrm{O}_{(6)}}$

8. $-L_{(5)}+\underset{-}{P_{4(5)}} \rightarrow \underset{-}{L_{i 3} P_{(5)}}$
9. $-C^{C} \mathrm{H}_{4(0)}+\underset{2(6)}{ } \rightarrow-\mathrm{CO}_{2(6)}+\underset{-}{\mathrm{H}_{2} \mathrm{O}_{(6)}}$



## WRITING BALANCED CHEMICAL EQUATIONS (pg. 2, Part II notes)

- To write a balanced chemical equation from a statement or word equation:

1. Write the chemical formulas for all reactants and products involved
2. Arrange as Reactants $\rightarrow$ Products

## Example

Hydrogen and chlorine react to produce hydrogen chloride gas.

1. Word Equation:
2. Chemical Equation:

## Example 2 (pg. 6, Balancing Worksheet)

Solid potassium and aqueous magnesium chloride react to produce solid magnesium and aqueous potassium chloride.

1. Word Equation:
2. Chemical Equation:

## Remainder of Class (Homework)

- Worksheet \#11 - Balancing Chemical Reactions
- Don't forget: WHMIS Worksheet and Formula Review


## Science 1206

Reaction Types

## Homework

- Worksheet \#11 - Balancing Chemical Reactions
- Don't forget: WHMIS Worksheet and Formula Review
- Both have to be passed in today
- Quiz on Monday - Balancing and Reaction Types


## Worksheet \#11

2. Solid aluminum combines with oxygen gas to produce solid aluminum oxide.

Aluminum + oxygen $\rightarrow$ aluminum oxide
$\mathrm{Al}+\mathrm{O}_{2} \rightarrow \mathrm{Al}_{2} \mathrm{O}_{3}$
3. Hydrogen peroxide decomposes (breaks down) into water and oxygen gas.

Hydrogen peroxide $\rightarrow$ water + oxygen

$$
2 \mathrm{H}_{2} \mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}
$$

4. The combustion (burning) of ethyne gas, $\mathrm{C}_{2} \mathrm{H}_{2(\mathrm{~g})}$ in the presence of oxygen gas produces carbon dioxide gas and water vapor.
ethyne + oxygen $\rightarrow$ carbon dioxide + water
$2 \mathrm{C}_{2} \mathrm{H}_{2}+5 \mathrm{O}_{2} \rightarrow 4 \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$

## Types of Chemical Reactions (pg 2-4 notes)

- There are 5 types of reactions that you need to recognize:
- Simple Composition
- Simple Decomposition
- Single Replacement
- Double Replacement
- Hydrocarbon Combustion


## 1. Formation (Simple Composition)

2 elements or compounds react to form 1 new compound

Example: $\quad 2 \mathrm{Mg}_{(\mathrm{s})}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{MgO}$
General: $\quad A+B \rightarrow A B$
Word: element + element $\rightarrow$ compound

## Formation: $A+B \rightarrow A B$

- magnesium reacts with oxygen from the air
- Magnesium + oxygen $\rightarrow$
- $\mathrm{Mg}+\mathrm{O}_{2} \rightarrow$


## Formation: $A+B \rightarrow A B$

- hydrogen and oxygen react to produce water
- Hydrogen + oxygen $\rightarrow$ water
- $2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$


## 2. Decomposition

1 compound breaks down into 2 elements or compounds

General: $\quad \mathrm{AB} \rightarrow \mathrm{A}+\mathrm{B}$

Word: compound $\rightarrow$ element + element OR compound $\rightarrow$ compound + compound

Example: $2 \mathrm{Cu}_{2} \mathrm{O}_{(\mathrm{s})} \rightarrow 4 \mathrm{Cu}_{(\mathrm{s})}+\mathrm{O}_{2(\mathrm{~g})}$

## $A B \rightarrow A+B$

## water is broken down into its elements

Water $\rightarrow$

$$
\mathrm{H}_{2} \mathrm{O} \rightarrow
$$

## $A B \rightarrow A+B$

mercury(II) oxide decomposes

Mercury(II) oxide $\rightarrow$
$\mathrm{HgO} \rightarrow$

## 3. Single Replacement (Single Displacement)

- A element replaces the cation/anion in a compound

$$
\text { General: } \quad A+B C \rightarrow B+A C
$$

Word: element + compound $\rightarrow$ element + compound

Example: $\quad \mathrm{Zn}_{(\mathrm{s})}+\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2(\mathrm{aq)}} \rightarrow \mathrm{Pb}_{(\mathrm{s})}+\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2(\text { aq })}$

## $A+B C \rightarrow B+A C$

- Barium and zinc chloride react
- Barium + zinc chloride $\rightarrow$
- $\mathrm{Ba}+\mathrm{ZnCl}_{2} \rightarrow$


## $A+B C \rightarrow B+A C$

- chlorine reacts with sodium bromide solution
- Chlorine + sodium bromide $\rightarrow$
- $\mathrm{Cl}_{2}+\mathrm{NaBr} \rightarrow$


## 4. Double Replacement (Double Displacement)

- Two compounds react and switch ions

General: $\mathrm{AB}+\mathrm{CD} \rightarrow \mathrm{AD}+\mathrm{CB}$
Word: compound + compound $\rightarrow$ compound + compound

Example: $\mathrm{BaCl}_{2(a q)}+\mathrm{AgNO}_{3(a q)} \rightarrow \mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2(a q)}+\mathrm{AgCl}$;)

- solutions of barium chloride and potassium carbonate react
- barium chloride + potassium carbonate
- $\mathrm{BaCl}_{2}+\mathrm{K}_{2} \mathrm{CO}_{3} \rightarrow$


## 5. Hydrocarbon Combustion (Not on midterm)

- A hydrocarbon $\left(\mathrm{C}_{x} \mathrm{H}_{y}\right)$ reacts with oxygen to produce $\mathrm{CO}_{2}$ and $\mathrm{H}_{2} \mathrm{O}$

General: $\quad \mathrm{C}_{\mathrm{x}} \mathrm{H}_{\mathrm{y}}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{CO}_{2(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$
Word: hydrocarbon + oxygen $\rightarrow$ carbon dioxide + water

Example: $\quad \mathrm{C}_{3} \mathrm{H}_{8(\mathrm{~g})}+5 \mathrm{O}_{2(\mathrm{~g})} \rightarrow 3 \mathrm{CO}_{2(\mathrm{~g})}+4 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$

- Butane, $\mathrm{C}_{4} \mathrm{H}_{10(\mathrm{~g})}$ is burned as fuel in a lighter
- Butane + oxygen $\rightarrow$

Formation Decomposition
Single Replacement Double Replacement Hydrocarbon Combustion

| 1. | $\ldots \mathrm{C}_{10} \mathrm{H}_{20(5)}$ | + | O27a) | $\rightarrow$ | $\underline{-} \mathrm{CO}_{2(\mathrm{q})}$ | + | $\ldots \mathrm{H}_{2} \mathrm{O}_{(\mathrm{q})}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2. | $\ldots \mathrm{Al}(\mathrm{OH})_{3(5)}$ | + | $\ldots \mathrm{HCl} \mathrm{max}^{\text {a }}$ | $\rightarrow$ | $\ldots \mathrm{AlCl}_{3(\mathrm{aq})}$ | + | $\ldots \mathrm{HOH}_{(0)}$ |
| 3. | $\ldots \mathrm{C} 4 \mathrm{H}_{8(9)}$ | + | $\underline{-} 0_{2[a]}$ | $\rightarrow$ | $\underline{-} \mathrm{CO}_{2(a)}$ | + | $\ldots \mathrm{H}_{2} \mathrm{O}_{(\mathrm{q})}$ |
| 4. | $\underline{C} C_{(5)}$ | + | $\mathrm{O}_{2(\mathrm{a}]}$ | $\rightarrow$ | $\ldots \mathrm{CO}_{(\mathrm{a})}$ |  |  |
| 5. | $\ldots \mathrm{C}_{5} \mathrm{H}_{1220}$ | + | $\underline{-} 0_{2(a)}$ | $\rightarrow$ | $-\mathrm{CO}_{2(\mathrm{a})}$ | + | $\ldots \mathrm{H}_{2} \mathrm{O}_{(\mathrm{a})}$ |
| 6. | $\ldots \mathrm{Li}(5)$ | + | $\ldots \mathrm{AlBr}_{3(3 \mathrm{a})}$ | $\rightarrow$ | $\ldots \mathrm{LiBr}_{(a \mathrm{a}}$ | + | $\ldots \mathrm{Al}_{(5)}$ |

Formation Decomposition
Single Replacement Double Replacement Hydrocarbon Combustion

$$
\begin{aligned}
& \text { 8. } \quad \mathrm{NH}_{4} \mathrm{OH}_{(a \mathrm{aq})}+\ldots \mathrm{H}_{3} \mathrm{PO}_{4(a \mathrm{a})} \rightarrow \ldots\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4(a \mathrm{a})}+\ldots \mathrm{HOH}_{(0)} \\
& \text { 9. } \quad \text { _ } L i_{(s)}+\ldots P_{4(s)} \quad \rightarrow \quad L_{i 3} P_{(s)} \\
& \text { 10. } \text { - }^{\mathrm{CH}_{4(q)}}+\underset{-}{\mathrm{O}_{2(q)}} \boldsymbol{\rightarrow} \text { - }^{\mathrm{CO}_{2(q)}}+\underset{-}{\mathrm{H}_{2} \mathrm{O}_{(q)}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 12. } \quad \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2(a \mathrm{a})}+\ldots \mathrm{Na}_{3} \mathrm{PO}_{4}(\mathrm{aq}) \quad \boldsymbol{\quad} \quad \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2(\mathrm{~s})}+\ldots \mathrm{NaNO}_{3(\mathrm{aq})}
\end{aligned}
$$

## Homework

- Worksheets
- 12
- 13
- 14 (Not Combustion)
- Monday - Short Quiz
- Balancing
- Give equations from names
- Identify reaction types

