

## Find the distance for the following equations.

1. Kayla drives her car at an average speed of $65 \mathrm{~km} / \mathrm{h}$ in a time of 1.5 h . How far does she travel in this time?
$v=65 \mathrm{~km} / \mathrm{h}$

$$
d=v \times t
$$

$$
=65 \mathrm{~km} / \mathrm{h} \times 1.5 \mathrm{~h}
$$

$$
t=1.5 \mathrm{~h}
$$

$$
d=97.5 \mathrm{~km}
$$

$$
d=98 \mathrm{Km}
$$

2. Mitchel walked for 2.1 h along part of the Trans Canada Trail at a speed of $3.6 \mathrm{~km} / \mathrm{h}$. What distance did Mitchel travel?

$$
\begin{array}{rlrl}
v & =3.6 \mathrm{~km} / \mathrm{h} & d & =v \times t \\
d=? & & =3.6 \mathrm{~km} / \mathrm{h} \times 2.1 \mathrm{~h} \\
t & =2.1 \mathrm{~h} & d & =7.56 \mathrm{~km} \\
& & d & =7.6 \mathrm{~km}
\end{array}
$$

3. The cruise control set on Shayne's car is on $80 \mathrm{~km} / \mathrm{h}$. What distance does the car travel during 3.5 h ?

$$
\begin{aligned}
& v=80 \mathrm{~km} / \mathrm{h} \\
& d=? \\
& t=3.5 \mathrm{~h}
\end{aligned}
$$

$$
d=v \times t
$$

$$
=80 \mathrm{~km} / \mathrm{h} \times 3.5 \mathrm{~h}
$$

$$
\begin{aligned}
& d=280 \mathrm{~km} \\
& d=2.8 \times 10^{2} \mathrm{~km}
\end{aligned} \text { *either accepted }
$$

## Find the time for the following equations.

1. Jerrett and Jimmy are competing in a 50000 m race. Jerrett can run at $2.5 \mathrm{~m} / \mathrm{s}$ while Jimmy can run at $1.8 \mathrm{~m} / \mathrm{s}$.

$$
\begin{aligned}
& \text { Jerrett } \\
& V=2.5 \mathrm{~m} / \mathrm{s} \\
& d=50000 \mathrm{~m} \\
& t=?
\end{aligned}
$$

Jimmy
$v=1.8 \mathrm{~m} / \mathrm{s}$
$d=50000 \mathrm{~m}$
a.) How long will it take each person to finish the race?
Jer

$$
t=d / v=\frac{50000 \mathrm{~m}}{25 \mathrm{~m} / \mathrm{s}}=20000 \mathrm{~s}
$$

$$
\text { or } 2.0 \times 10^{4} 5
$$

b.) When Jerrett crosses the finish line, how much time is left for Jimmy to cross?

$$
\begin{aligned}
& \text { Jim/t } t=\frac{d}{v}=\frac{50000 \mathrm{~m}}{1.8 \mathrm{~m} / \mathrm{s}}=27.77 .7 .78 \mathrm{~s} \\
& \text { or } 2.8 \times 10^{4} \mathrm{~s}
\end{aligned}
$$

$$
27777.78-20000=7777.78 \mathrm{~s}\left\{2.8 \times 10^{4}-2.0 \times 10^{4}=8.0 \times 10^{3} \mathrm{~s}\right.
$$

2. How long would it take Daniel to travel a total distance of 25.0 km at an average speed of 5.2 $\mathrm{km} / \mathrm{h}$ ?

$$
\begin{array}{ll}
v=5.2 \mathrm{~km} / \mathrm{h} \\
d=25.0 \mathrm{~km} \\
t=?
\end{array} \quad t=\frac{d}{v}=\frac{25.0 \mathrm{~km}}{5.2 \mathrm{~km} / \mathrm{h}} \quad=4.8 \mathrm{~h} \quad t=4.8 \mathrm{~h}
$$

b.) How many minutes would this be?

PHYSICS IN SCIENCE 1206


## AVERAGE SPEED EQUATIONS

Name:


## Find the average speed for the following.

1. Julie jogs to school a total distance of 5.2 km . If the trip takes her 0.84 h , what is her average speed?

$$
\begin{aligned}
& V=? \\
& d=5.2 \mathrm{~km} \\
& t=0.84 \mathrm{~h}
\end{aligned}
$$

$$
v=\frac{d}{t}=\frac{5.2 \mathrm{~km}}{0.84 \mathrm{~h}}
$$


2. Josh skates to school, a total distance of 4.5 km . The total journey takes him 0.62 h . What is Josh's average speed during the trip?

$$
\begin{aligned}
& v=? \\
& d=45 \mathrm{~km} \\
& t=0.62 \mathrm{~h}
\end{aligned}
$$

$$
v=\frac{d}{t}=\frac{4.5 \mathrm{~km}}{0.62 \mathrm{~h}}
$$

$$
v=7.3 \mathrm{~km} / \mathrm{h}
$$

3. If Noah and Michael Hike the Trans Canada Trail for 5.0 h and cover 42 km , what is the average speed for the trip?

$$
\begin{array}{lr}
v=? & v=\frac{d}{t}=\frac{42 \mathrm{~km}}{5.0 \mathrm{~h}} \\
d=42 \mathrm{~km} \\
t=5.0 \mathrm{~h} & v=8.4 \mathrm{~km} / \mathrm{h}
\end{array}
$$

4. Ms. Blackmore's car leave Foxtrap and travels to Longpond, a total of 2 km in 0.100 h . What is her speed? Is this speed more or less than the speed limit in the area.
```
v=?
d}=2\textrm{km
t=0.100h
```

$$
v=\frac{d}{t}=\frac{2 \mathrm{~km}}{0.100 \mathrm{~h}}
$$

$$
V=20 \mathrm{~km} / \mathrm{h}
$$

$$
\text { or } V=2 \times 10^{1} \mathrm{~km} / \mathrm{h}
$$


$\qquad$

1. How many significant digits are there in the following measurements?
A. $\quad 35070 \mathrm{~mm} \quad 5$
B. $\quad 21.0400 \mathrm{~L}$ $\qquad$
C. $\quad 0.123 \mathrm{~kg}$ $\qquad$
2. Change the following measurements to scientific notation:
A. $\quad 65498 \mathrm{~cm} \quad 6.5 \times 10^{4} \mathrm{~cm}$
B. $\quad 734.5 \mathrm{~m} \quad 7.3 \times 10^{2} \mathrm{~m}$
C. $\quad 0.0032832 \mathrm{~L} \quad 3.3 \times 10^{-3} \mathrm{~L}$
3. Change the following scientific notation measurements to regular measurements:
A. $\quad 1.56 \times 10^{4} \mathrm{~m} \quad 15600 \mathrm{~m}$
B. $\quad 3.6 \times 10^{-2} \mathrm{~m} \quad 0.036 \mathrm{~m}$
C. $\quad 7.369 \times 10^{-5} \mathrm{~m} \underline{0.0000} 7369 \mathrm{~m}$
4. Round off these measurements to the number of significant digits in brackets:

| A. | $734.5(2)$ | $\underline{7.3 \times 10^{2}}$ |
| :--- | :--- | :--- |
| B. | $0.84329(4)$ | $\underline{0.8433}$ |
| C. | $88.340(3)$ | $\underline{88.3}$ |
| D. | $25000(1)$ | $\underline{3 \times 10^{4}}$ |

5. Add the following numbers, and round off the answer to the correct number of decimal places.

$$
\begin{array}{lll}
\text { A. } & 1.25 \mathrm{~km}+65 \mathrm{~km} & \underline{66.25 \mathrm{~km}} \Rightarrow 66 \mathrm{~km} \\
\text { B. } & 1.0025 \mathrm{~m}-0.250 \mathrm{~m} & \underline{0.7525 \mathrm{~m}} \Rightarrow 0.753 \mathrm{~m} \\
\text { C. } & 1.21^{\circ} \mathrm{C}+3.4^{\circ} \mathrm{C} & \underline{4.61^{\circ} \mathrm{C}} \Rightarrow 4.6^{\circ} \mathrm{C}
\end{array}
$$

6. Multiply the following numbers and round off the answers to the correct number of significant digits.
A. $\quad 2.14 \mathrm{~kg} x 32.366 \mathrm{~kg} \quad 69.26324 \mathrm{~kg}^{2} \Rightarrow 69.3 \mathrm{~kg}^{2}$
B. $\quad 3.894 \mathrm{~m} \div 2.16 \mathrm{~s} \quad 1.8028 \mathrm{~m} / \mathrm{s} \Rightarrow 1.80 \mathrm{~m} / \mathrm{s}$

C $\quad 200 \mathrm{sx} 3.58 \mathrm{~s} \quad 716 \mathrm{~s}^{2}$
7. Convert the following:

| A. | 943000 cm | 9.43 km | $\begin{aligned} & 943000 \mathrm{~cm} \times \frac{1 \mathrm{~m}}{100 \mathrm{~cm}}=9430 \mathrm{~m} \\ & 9430 \mathrm{dd} \times \frac{1 \mathrm{~km}}{1000 \mathrm{dr}}=9.43 \mathrm{~km} \end{aligned}$ |
| :---: | :---: | :---: | :---: |
| B. | 30005 mm | 30.005 m | $30005 \mathrm{~mm} \times \frac{1 \mathrm{~cm}}{10 \mathrm{~mm}}=3000.5 \mathrm{~cm}$ |
| C. | 57.62 km | 57620 m | $3000.5 \mathrm{ch} \times \frac{1}{100 \mathrm{~mm}}=30.005 \mathrm{~m}$ |
|  |  |  | $57.62 \mathrm{~km} \times \frac{1000 \mathrm{~m}}{1 \mathrm{~km}}=57620 \mathrm{~m}$ |
| D. | 36.23 cm | $\underline{362.3} \mathrm{~mm}$ | $36.23 \mathrm{~cm} \times \frac{10 \mathrm{~mm}}{1 \mathrm{~cm}}=362.3 \mathrm{~mm}$ |

