5. A car travels 32.5 m in 12 seconds. How fast is the car moving? Give your answer in $\mathrm{km} / \mathrm{hr}$.
$V=$?

$$
v=\frac{d}{t}=\frac{32.5 \mathrm{~m}}{12 \mathrm{~s}}=2.7 \mathrm{~m} / \mathrm{s}
$$

$2.7 \mathrm{~m} / \mathrm{s} \times 3.6=9.75 \mathrm{~km} / \mathrm{h}$
$d=32.5 \mathrm{~m}$
$t=12 \mathrm{~s}$

$$
v=9.8 \mathrm{~km} / \mathrm{h}
$$

6. Traveling around St. John's by bus requires stopping many times. The average speed of a bus is $40.0 \mathrm{~km} / \mathrm{h}$. How far can a bus travel in 30.0 min ?
$v=40.0 \mathrm{~km} / \mathrm{h} \quad 30.0 \mathrm{~min} \times \frac{1 \mathrm{hr}}{60 \mathrm{~m} / \mathrm{h}}=0.5 \mathrm{~h} \quad d=20.0 \mathrm{~km}$
$d=$?
$t=30.0 \mathrm{~min}$

$$
\begin{aligned}
d & =v x t \\
& =40.0 \mathrm{~km} / \mathrm{h} \times 0.5 \mathrm{~h}=20.0 \mathrm{~km}
\end{aligned}
$$

7. How far could a rabbit run if it ran $36 \mathrm{~km} / \mathrm{h}$ for 5.25 minutes?
$v=36 \mathrm{~km} / \mathrm{h}$
$5.25 \mathrm{noin} \times \frac{1 \mathrm{hr}}{60 \mathrm{mir}}=0.0875 \mathrm{~h}$
$d=3.2 \mathrm{~km}$
$d=$?

$$
\begin{aligned}
d & =v \times t \\
& =36 \mathrm{~km} / \mathrm{h} \times 0.0875 \mathrm{~h}=3.15 \mathrm{~km}
\end{aligned}
$$

8. Kim skateboards down the street in front of the school, traveling at $24.0 \mathrm{~km} / \mathrm{h}$. How much time would it take her to travel 6.0 km ?
$v=24.0 \mathrm{~km} / \mathrm{h}$
$d=6.0 \mathrm{~km}$

$$
t=\frac{d}{v}=\frac{6.0 \mathrm{~km}}{24.0 \mathrm{~km} / \mathrm{h}}=0.25 \mathrm{~h}
$$

$$
t=0.25 \mathrm{~h}
$$

$t=$?
9. White Hills lake is 40.0 km away. Israel leaves Baker at 10:00 arm. and travels at a speed of $60.0 \mathrm{~km} / \mathrm{h}$. Russell leaves Baker at 1:00 p.m. and travels at a speed of 75.5 km / h. Who will reach White Hills Lake first?

$$
\begin{aligned}
& \text { Israel } \\
& V=60.0 \mathrm{~km} / \mathrm{h} \\
& d=40.0 \mathrm{~km} \\
& t=\text { ? } \quad t=\text { ? } \\
& t=\frac{d}{v}=\frac{40.0 \mathrm{~km}}{60.0 \mathrm{~km} / \mathrm{h}} \\
& t=0.667 \mathrm{~h} \\
& \text { Russell } \\
& V=75.5 \mathrm{~km} / \mathrm{h} \\
& d=40.0 \mathrm{~km} \\
& t=\text { ? } \\
& t=\frac{d}{v}=\frac{40.0 \mathrm{~km}}{75.5 \mathrm{~km} / \mathrm{h}} \\
& t=0.530 \mathrm{~h} \\
& \text { Although Russell took } \\
& \text { less time to get there, } \\
& \text { Israel will reach white } \\
& \text { Hills lake first because } \\
& \text { he left much earlier! }
\end{aligned}
$$

Science 1206

Worksheet 2 - Speed, Distance, Time

Name: \qquad

Complete the following questions.
Remember: Show your workings!

Formulae: $v=\frac{d}{t}$
$d=V \times t \quad t=\frac{d}{V}$
Include Units!
Use Significant Figures!

1. A car travels from St. John's to Clarenville in 2.0 hr . The total distance traveled by the car is 175 km . What is the average speed of the car for the trip?
$v=$?
$\begin{array}{ll}d=175 \mathrm{~km} \\ t=2.0 \mathrm{hr}\end{array} \quad r=\frac{d}{t}=\frac{175 \mathrm{~km}}{2.0 \mathrm{~h}}=87.5 \mathrm{~km} / \mathrm{h}$

$$
V=88 \mathrm{~km} / \mathrm{h}
$$

2. A person walks at an average speed of $6.0 \mathrm{~km} / \mathrm{h}$. How much time is required for a person to walk 30.0 m ?

$$
\begin{array}{ll}
v=6.0 \mathrm{~km} / \mathrm{h} & 30.0 \mathrm{~h} \times \frac{1 \mathrm{~km}}{1000 \mathrm{~m}}=0.03 \mathrm{~km} \\
d=30.0 \mathrm{~m} & t=\frac{d}{v}=\frac{0.03 \mathrm{~km}}{6.0 \mathrm{~km} / \mathrm{h}}=0.005 \mathrm{~h}
\end{array}
$$

3. How much time would it take Roy to walk 1.00 km if he walked at a rate of 4.5 km / h ?
$v=4.5 \mathrm{~km} / \mathrm{h}$
$d=1.00 \mathrm{~km}$

$$
t=?
$$

$$
t=\frac{d}{v}=\frac{1.00 \mathrm{~km}}{4.5 \mathrm{~km} / \mathrm{h}}=0.222 \mathrm{~h}
$$

$$
t=0.22 \mathrm{~h}
$$

4. If two hikers walk for 5.0 hr a day and cover 21.0 km , what is their average velocity for the day? How long will it take them to travel 65 km ?
$V=?$
$d=21.0 \mathrm{~km}$
$t=5.0 \mathrm{~h}$
$V=\frac{d}{t}=\frac{21.0 \mathrm{~km}}{5.0 \mathrm{~h}}=4.2 \mathrm{~km} / \mathrm{h}$
$V=4.2 \mathrm{~km} / \mathrm{h}$$\quad\left\{\begin{array}{rl}v=4.2 \mathrm{~km} / \mathrm{h} \\ d=21.0 \mathrm{~km} \\ t=? & t=\frac{d}{v} \\ & =\frac{65 \mathrm{~km}}{4.2 \mathrm{~km} / \mathrm{h}} \\ & =15.48 \mathrm{~h}\end{array}\right.$
